首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pre-treatment of steel reinforcement in mortar by a 72 h immersion in 0.1 M phenyl-phosphonic acid (C6H5P(O)(OH)2; PPA) was investigated. Then effectiveness of this procedure for protection against the corrosion of steel bars embedded in pre- or post-addition of sodium chloride mortar was evaluated by electrochemical impedance spectroscopy, visual inspection, SEM, and EDS analyses.The results showed that for non-treated steel reinforcement, the charge transfer resistance (Rt) decreases considerably with time indicating a very advanced state of corrosion after 54 months corrosion test. In contrast, for pre-treated steel rebar, this resistance remains high reflecting the effectiveness of the pre-treatment method against corrosion. The corrosion rate evaluated from the charge transfer resistance at 54 months corrosion in chloride containing medium was 0.5 μm year−1.  相似文献   

2.
The inhibition of the corrosion of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves has been studied using weight loss, electrochemical impedance spectroscopy (EIS), linear polarization and potentiodynamic polarization techniques. Inhibition was found to increase with increasing concentration of the leaves extract. The effect of temperature, immersion time and acid concentration on the corrosion behavior of mild steel in 1 M HCl and 0.5 M H2SO4 with addition of extract was also studied. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the metal surface. The adsorption of the extract on the mild steel surface obeys the Langmuir adsorption isotherm. The activation energy as well as other thermodynamic parameters (Q, ΔH*, and ΔS*) for the inhibition process was calculated. These thermodynamic parameters show strong interaction between inhibitor and mild steel surface. The results obtained show that the extract of the leaves of M. koenigii could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric and sulphuric acid media.  相似文献   

3.
The effect of the extract of Punica granatum (PG) and their main constituents involve ellagic acid (EA) and tannic acid (TA), as mild steel corrosion inhibitor in 2 M HCl and 1 M H2SO4 solutions was investigated by weight loss measurements. The results obtained from the weight loss measurements show that the inhibition efficiency of TA even in high concentration is very low. Thus, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) investigations were used for different concentrations of PG and EA and best concentration of TA. Potentiodynamic polarization curves indicated that PG and EA behave as mixed-type inhibitors. EIS measurements show an increase of the transfer resistance with increasing inhibitor concentration. The temperature effect on the corrosion behavior of steel without and with the PG extract was studied. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm.  相似文献   

4.
Potentiodynamic cathodic and anodic polarization technique was used to study the effect of some common amino acids concentration on the corrosion inhibition of mild steel in H2SO4. A value of 1.0 × 10?4 M represents a critical concentration, for the aliphatic amino acids, above which the corrosion rate increases. The increase of the sulphur-containing amino acids concentration largely decreases the corrosion rate. A mono-layer adsorption of the amino acid molecules on the metal surface was proposed with the adsorption behaviour following the Temkin isotherm at 30°C. The effect of temperature on the corrosion inhibition of amino acids was also studied over the temperature range 25 to 60°C. Values of the apparent activation energy in the range of 42 - 49 kJ mol?1 were estimated for the steel corrosion in the inhibited acid solutions.  相似文献   

5.
We report the synthesis of phase pure, mono-dispersed Fe3O4 nanoparticles of size ??10?nm via chemical co-precipitation of ferrous and ferric ions, under controlled pH and temperature. The nanoparticles are oleic acid functionalized and hence dispersible in organic medium. The structure and morphology of nanoparticles are determined by analyzing XRD pattern and TEM micrographs, confirming the formation of phase pure Fe3O4 nanoparticles. The magnetization studies reveal the superparamagnetic behavior of the nanoparticles at room temperature. The changes in blocking temperatures (T B) of magnetic nanoparticles with applied magnetic fields (H ap), noted from the cusp of the zero-field-cooled magnetization, the indicate effects of dipole interactions. A decrease in blocking temperature from 95?K to 15?K has been observed on varying the magnetic field from 50?Oe to 5000?Oe. T B versus H relation follows the equation T B(H)=T o(1?(H/H o)) m , i.e. the Néel?CBrown model of magnetic relaxation in nanoparticles.  相似文献   

6.
《Materials Letters》2007,61(4-5):1197-1204
The effect of a ruthenium–ligand complex (RuLC) on the corrosion of steel in 2 M H3PO4 has been investigated at various temperatures using electrochemical techniques (impedance spectroscopy (EIS), polarisation curves) and weight loss measurements. Inhibition efficiency (E%) increases with RuLC concentration to attain 90% at 5 × 10− 4 M. EIS measurements show that the dissolution process of steel occurs under activation control. Polarisation curves indicate that RuLC acts as a cathodic inhibitor. E% values obtained from various methods used are in good agreement. The temperature effect on the corrosion behaviour of steel in 2 M H3PO4 without and with the inhibitor at various concentrations was studied in the temperature range from 298 to 338 K. Thermodynamic parameters such as adsorption heat (ΔHads°), adsorption entropy (ΔSads°) and adsorption free energy (ΔGads°) have been calculated. Kinetic parameters for the corrosion reaction at different concentrations of RuLC were determined. Adsorption of RuLC on the mild steel surface in 2 M H3PO4 follows the Langmuir isotherm model.  相似文献   

7.
The corrosion behaviour of nitrogen-containing austenitic stainless steel in methanol containing different concentrations of H2SO4, HCl, LiCl and H2SO4 + HCl has been investigated using a potentiostatic polarization method. The cathodic reaction in the H2SO4, HCl and H2SO4 + HCl solutions was proton reduction whereas in the neutral LiCl solution, oxygen reduction was the predominant cathodic reaction. Active, passive and transpassive behaviours were observed only for higher concentrations of H2SO4 (0.01–2.0 M) due to the inherent water content. A cathodic loop, characterized by measured negative current in the anodic region, was also observed in solutions, in which the concentration of H2SO4 was 1.0 M or higher. The relative stability of the passive films decreased as the H2SO4 concentration increased, and thus the steel suffered from mild pitting corrosion. In the chloride environment, the rate of corrosion increased as the Cl ion concentration increased. The presence of acid along with Cl ions enhanced corrosion, and the corrosion rate increased significantly. The steel suffered from mild intergranular corrosion in acidic chloride solutions of methanol. In the H2SO4 + HCl solutions, passive films were only formed when the H2SO4 to HCl concentration ratio was greater than ∼10:1.  相似文献   

8.
Inhibition of the corrosion of mild steel in 1.0 M HCl solution by a Schiff base compound named 2-[(4-phenoxy-phenylimino)methyl]-phenol (APS) was investigated at different temperatures (25–55 °C) using electrochemical measurements. The inhibition efficiency increased as APS concentration and temperature increased. It was found that adsorption for APS on mild steel complies with the Langmuir adsorption isotherm in all studied temperature. Thermodynamic parameters (ΔGads, ΔHads and ΔSads) for APS adsorption on mild steel were found out and discussed at each temperature. Time dependency of mild steel in 1.0 M HCl solution in the absence and presence of APS was also studied. The surface morphology of mild steel was examined via SEM analysis.  相似文献   

9.
The corrosion behavior of 2101 duplex and 301 austenitic stainless steel in the presence of sulfate (SO4 2?) anion concentrations was investigated through polarization techniques, weight loss and optical microscopy analysis. The corrosion rates of the steels were comparable after 3M H2SO4. Results confirm that the duplex steel displayed a higher resistance to pitting corrosion than the austenitic steel. Experimental observation shows that its pitting potential depends on the concentration of the SO4 2? ions in the acid solution due to adsorption of anions at the metal-film interface. The duplex steel underwent stable pitting at relatively higher potentials and significantly higher corrosion current than the austenitic steel. The duplex steel exhibited lower corrosion potential values thus less likely to polarize in the acid solution. Solution concentration had a limited influence on the polarization behavior of the austenitic steel and hence its reaction to SO4 2? ion penetration from analysis of the pitting potentials and observation of its narrower polarization scans compared to the duplex steel which showed wide scatter over the potential domain with changes in concentration.  相似文献   

10.
Single crystals of new uranyl selenates K2(H5O2)(H3O)[(UO2)2(SeO4)4(H2O)2](H2O)4 (1) and K3(H3O)[(UO2)2(SeO4)4(H2O)2](H2O)5 (2) were prepared by isothermal evaporation at room temperature. The crystal structure of 1 was solved by the direct method [C2/c, a = 17.879(5), b = 8.152(5), c = 17.872(5) Å, β = 96.943(5)°, V = 2585.7(19) Å3, Z = 4] and refined to R 1 = 0.0449 (wR 2 = 0.0952) for 2600 reflections with |F o| ≥ 4σ F . The structure of 2 was solved by the direct method [P21/c, a = 17.8377(5), b = 8.1478(5), c = 23.696(1) Å, β = 131.622(2)°, V = 2574.5(2) Å3, Z = 4] and refined to R 1 = 0.0516 (wR 2 = 0.1233) for 4075 reflections with |F o| ≥ 4σ F . The structures of 1 and 2 are based on [(UO2)2(SeO4)4(H2O)2]4? layers. The charge of the inorganic layer is compensated by potassium and oxonium ions arranged in the interlayer space. Each K ion is surrounded by seven O atoms belonging to uranyl selenate layers and water molecules, so that it binds with each other the adjacent uranyl selenate structural elements.  相似文献   

11.
Exudate gum from Raphia hookeri (RH) was tested as corrosion inhibitor for mild steel in H2SO4 using weight loss and hydrogen evolution techniques at 30–60 °C. Results obtained revealed that RH act as corrosion inhibitor for mild steel in sulfuric acid medium. The corrosion rates in all concentrations studied increased with rise in temperature. The inhibition efficiency was observed to increase with increase in RH concentration but decreased with rise in temperature, which is suggestive of physical adsorption mechanism. The inhibitive action of RH is discussed in view of the adsorption of its phytochemical components onto steel surface, which protects the metal surface and thus do not permit the corrosion process to take place. The adsorption of the exudate gum onto the steel surface was found to follow the Langmuir adsorption isotherm. The free energies for the adsorption process and the apparent activation energies, enthalpies and entropies of the dissolution process were determined. The fundamental thermodynamic functions were used to glean important information about the RH inhibitory behavior. The results were explained in terms of chemical thermodynamics.  相似文献   

12.
《Materials Letters》2005,59(29-30):3806-3809
The corrosion inhibition of mild steel is the subject of tremendous technological importance due to the increased industrial applications of this material. This paper reports the results of mass loss and potentiodynamic polarization measurements on the corrosion inhibition of mild steel in 0.5 M H2SO4 in the temperature range 30–60 °C using sodium naphthalene disulphonic acid (NDSA) as an inhibitor. The inhibition efficiency increased with the increase in concentration of NDSA till a critical value which is independent on temperature. The adsorption of inhibitor at 30 °C followed Flory–Huggins adsorption isotherm and the value of standard free energy of adsorption suggests that it is chemisorption.  相似文献   

13.
Euphorbia falcata L. extract (EFE) was investigated as eco-friendly corrosion inhibitor of carbon steel in 1 M HCl using gravimetric, ac impedance, polarization and scanning electron microscopy (SEM) techniques. The experimental results show that EFE is good corrosion inhibitor and the protection efficiency is increased with the EEF concentration. The results obtained from weight loss and ac impedance studies were in reasonable agreement. Impedance experimental data revealed a frequency distribution of the capacitance, simulated as constant phase element. Polarization curves indicated that EFE is a mixed inhibitor. The corrosion inhibition was assumed to occur via adsorption of EFE molecules on the metal surface. The adsorption of the E. falcata extract was well described by the Langmuir adsorption isotherm. The calculated ΔGadso value showed that the corrosion inhibition of the carbon steel in 1 M HCl is mainly controlled by a physisorption process.  相似文献   

14.
Cathodic polarization curves for mild steel in 1.0 N H2SO4 and 1.0N HCl, containing various concentrations of thiourea (TU) (1–25 mM) and thiosemicarbazide (TSC) (0.2–25 mM), were measured in the temperature range 20–50 °C. The apparent activation energy for corrosion (ΔE*) was calculated from Icor vs 1/T and Rp/T vs 1/T relations. ΔE* is virtually constant by changing TU concentrations (55–57 KJ/mole in H2SO4). An interpretation for the loss of inhibition efficiency of TU in acid solution is given. This is based on the decomposition of TU to ammonium thiocyanate.  相似文献   

15.
In the present investigation a new corrosion inhibitor, N′-(3,4-dihydroxybenzylidene)-3-{[8-(trifluoromethyl)quinolin-4-yl]thio}propanohydrazide(DHBTPH) was synthesized, characterized and tested as a corrosion inhibitor for mild steel in HCl (1 M, 2 M) and H2SO4 (0·5 M, 1 M) solutions using weight-loss method, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods. The corrosion inhibition efficiency measured by all the above three techniques were in good agreement with each other. The results showed that DHBTPH is a very good inhibitor for mild steel in acidic media. The inhibition efficiency in different acid media was found to be in the decreasing order 0·5 M H2SO4 > 1 M HCl > 1 M H2SO4 > 2 M HCl. The inhibition efficiency increases with increasing inhibitor concentration and with increasing temperature. It acts as an anodic inhibitor. Thermodynamic and activation parameters are discussed. Adsorption of DHBTPH was found to follow the Langmuir’s adsorption isotherm. Chemisorption mechanism is proposed. The mild steel samples were also analysed by scanning electron microscopy (SEM).  相似文献   

16.
Newly developed low-temperature nitride synthesis route was used to introduce interstitial nitrogen into the passive layer of as-received and as-polished 316L stainless steel. The new thermochemical route is based on treating the stainless steel samples in potassium nitrate melt in an ultra pure nitrogen atmosphere at 450 °C. Electrochemical impedance spectroscopy (EIS) and dc polarization measurements have been used to evaluate the nitride layer performance in 3.5% NaCl solution. Results showed a marked increase in the corrosion resistance of nitrided stainless steel even after maintaining two weeks in NaCl solution. The effect of the treatment temperature was also studied. Data showed that the as-polished samples nitrided at 450 °C have the highest corrosion resistance. The polarization resistance (Rp) for the as-polished and as-received blank stainless steel samples was estimated by EIS were approximately 4.0 × 104 Ω cm2 and 2.0 × 104 Ω cm2, respectively. The Rp increased by a factor of 2.5–5 for the nitrided samples. Increasing the nitriding temperature from 450 to 600 °C affects negatively the corrosion resistance of stainless steel in NaCl solution. The Rp of the samples nitrided at 600 °C decreased sharply being almost 1/30 of the Rp of the samples nitrided at 450 °C. Linear polarization measurements showed that the lowest corrosion rates and highest polarization resistances obtained from the as-polished nitrided samples at 450 °C. It has been found from the potentiodynamic measurements that the Ecorr of the as-polished nitrided samples at 450 °C is nobler than that measured from the other groups. The surface morphology was analysed by optical microscope and SEM-EDS under different nitriding conditions.  相似文献   

17.
The corrosion protection performances of epoxy-coated Mn steel and carbon steel were evaluated by electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) analysis. EIS was performed on coated Mn steel with a scratch in a 0.1 M NaCl solution after a wet/dry cyclic corrosion test. The charge transfer resistance (R ct) and film resistance (R f) of the coated Mn steel displayed a higher value than the coated carbon steel. The increase in the charge transfer resistance and film resistance of the coated steel is due to the presence Mn in steel. SECM was conducted to estimate the corrosion protection performance of the epoxy-coated Mn steel immersed in a 0.1 M NaCl solution. It was found that dissolution of Fe2+ was suppressed at the scratch on the coated Mn steel due to the higher resistance for anodic dissolution of the substrate. SEM/EDX analysis showed that Mn was enriched in corrosion products at a scratched area of the coated steel after corrosion testing. FIB-TEM analysis confirmed the presence of the nanoscale oxide layer of Mn in the rust of the steel, which had a beneficial effect on the corrosion resistance of the coated steel by forming protective corrosion products in the wet/dry cyclic test.  相似文献   

18.
The dependencies of the Hall coefficient RH and Seebeck coefficient S at room temperature on the thickness (d=10-550 nm) of thin PbTe films prepared by the thermal evaporation in vacuum of n-type PbTe crystals with various charge carrier concentrations (1017-1019 cm−3) and their deposition on mica substrates were obtained. It was established that, with decreasing thickness of PbTe films, a transition from an electron to a hole conductivity occurs, and the inversion point shifts to smaller d values as the electron concentration in the target material increases. The experimental RH(d) and S(d) dependencies are interpreted in terms of the acceptor states created by oxygen on the film surface. These dependencies were also calculated theoretically, taking into account the existence of two types of charge carriers (electrons and holes). The theoretical curves are found to be in good agreement with the experimental data.  相似文献   

19.
We present a theoretical study of the in-plane resistivity ρ a b (T) and Hall coefficient R H (T) within the polaronic model and precursor pairing scenario by considering a two-component charge carrier picture in the normal state of high-temperature superconducting cuprates (HTSC). Here, we use a Boltzmann-equation approach and extended BCS-like model to compute ρ a b (T) and R H (T) in the τ-approximation. The opening of the pseudogap (PG) in the normal state of the cuprates should affect their transport properties. We have found that the transition to the PG regime and the effective conductivity of charge carriers in the normal state are responsible for the pronounced non-linear temperature dependence of ρ a b and R H . With the two-component model analysis, we conclude that the opening of the BCS-like PG, while the non-linear temperature dependence of ρ a b and R H could be understood as a consequence of pairing fluctuations in the PG state of cuprate superconductors. The calculated results for ρ a b (T) and R H (T) were compared with the experimental data obtained for various hole-doped cuprates. For all the considered cases, a good quantitative agreement was found between theory and experimental data. We also show that the energy scales of the binding energies of charge carriers are identified by PG crossover temperature on the cuprate phase diagram.  相似文献   

20.
The lattice constants of nonstoichiometric CdI2-type transition-metal dichalcogenides exhibit a characteristic feature. One of the body-diagonal lengths of the hexagonal lattice is kept nearly constant over the homogeneity range. This body-diagonal direction involves the full-layer metal-chalcogen bonds. The heats of formation of various CdI2-type transition-metal dichalcogenides are correlated to the reduced length which is derived from that body-diagonal and the ideal ionic radii. The ΔHof values of the CdI2-type transition-metal dichalcogenides can be estimated from the following empilical formula within the error of about 10kcal/mole. ΔHof = 1030 LR ? 144 (kcal/mole). LR: Reduced length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号