首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel ultraviolet (UV)‐curable monomer α,ω‐dichloropolysiloxane was synthesized by the telomerization of dichlorodimethylsilane and octamethylcyclotetrasiloxane (D4). The products with very low peel strength (<0.332 N/cm) could be used as release agents in pressure‐sensitive adhesives. Moreover, the values of the dispersion component of surface energy (γ) from the films of UV‐curable prepolymers (26.40–33.75 mJ/m2) were determined and the effects of γ on the reduction of adhesion were investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2135–2139, 2002  相似文献   

2.
Cationic UV‐curable methacrylate copolymers consisting of glycidyl methacrylate, iso‐butyl methacrylate, and 2,2,3,4,4,4‐hexafluorobutyl methacrylate were synthesized, and their structures were characterized by FTIR, 1H NMR, and 13C NMR. A series of UV‐cured composite films based on the synthesized copolymers and an alicyclic epoxy resin, 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexanecarboxylate (CE) were obtained through photopolymerization. Their surface contact angle, chemical ability, gloss, light transmittance, thermal behavior, micromorphology, and shrinkage were investigated. Results indicated that these cured resins showed excellent gloss and visible light transmittance; after the combination of the copolymers and CE, and in the presence of fluorine in the curing systems they exhibited relatively fine water resistance, chemical, and thermal stability. It was observed that these copolymers could decrease the degree of the volume shrinkage to CE. The UV‐curable materials may have promising applications in optical fiber coatings, flip chip and Organic Light‐Emitting Diode (OLED) packing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
The work reported demonstrates that the yellowness of UV‐curable epoxide resins can be improved by adding certain tertiary amines in appropriately determined amounts. According to the results of our experiments, 2.0 wt% benzoyl peroxide added to a resin effectively enhances the crosslinking density, and phenolic free radicals are produced during UV curing, which consequently induce yellowness via the reaction of oxygen and the free radicals. Imidazole (1‐amine) and tertiary amines, including 1,2‐dimethylimidazole (2‐amine), 2,4,6‐tris(dimethylaminomethyl)phenol (3‐amine), 1‐methylimidazole (4‐amine) and 2‐methylimidazole (5‐amine), were chosen to be added to resins, and their effects on UV conversion and yellowness were investigated. According to the experimental results, tertiary amines in the resin can provide a certain degree of improvement in yellowness index (ΔYI) and color parameter (ΔE*ab) of the resin sample. Whatever the type of tertiary amine, it is found that the optimum content of amine in resin is 1.0 wt%. Also, among the studied amines, the 3‐amine exhibits the highest UV reactivity and the best efficiency for yellowness improvement with values of Δa*, Δb*, ΔYI and ΔE*ab as low as ? 1.4, 6.23, 11.27 and 6.48, respectively. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
Ultraviolet (UV)/moisture dual‐curable polysiloxane acrylates (PSAs) were prepared from N,N‐bis[3‐(triethoxysilyl)propyl]amine (G402) and ethoxylated trimethylolpropane triacrylate (EB160) through Michael addition. The obtained prepolymers were characterized by 1H‐NMR and FTIR. The rheological behavior of the prepolymers exhibited the properties of a Bingham fluid and the apparent viscosity was directly correlated with molecular weight. The photocuring kinetics of PSA were studied using photo‐DSC and all the polymerization conversions were high. With increasing content of tertiary amine in the prepolymer, the photocuring rate in air increased as well. The moisture‐curing kinetics of the prepolymers was studied using FTIR. It was found that the curing mechanism may be described as the transforming of Si O C into Si O Si structure, which was consistent with the theoretical expectation. DSC and TGA were used to characterize the glass‐transition temperatures and the thermomechanical stability of the prepolymers. Measurements of physical properties showed excellent gloss, impact strength, and high electric resistance for both UV‐ and moisture‐cured films, but poor adhesion for UV‐cured films and lower hardness for moisture‐cured films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 846–853, 2005  相似文献   

5.
Epoxy resins (EPs) have a wide range of applications due to their remarkable performances. A major issue about them is the associated serious environmental pollution and high manufacturing cost because of the tedious synthetic procedure and the large amount of organic solvents used in production. Here, we report a facile, highly efficient approach to addressing these challenges using thiol–ene click reaction. The new synthesis process is based on mass‐produced materials including triols, diols, mercaptopropionic acid and glycidyl methacrylate and involves only two steps, that is, esterification and thiol–ene click reaction. Three types of high purity sulfur‐containing EPs are synthesized at high yields. The chemical structures and molecular weights of the newly synthesized EPs were characterized by Fourier translation infrared spectroscopy, 1H‐NMR and matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Using the methyl nadic anhydride as crosslinker, these resins have shown excellent heat‐resistance due to the absence of hydroxyl groups. They demonstrate high thermal decomposition temperatures, showing no dehydration decomposition at 260°C and therefore are suitable for applications as solvent‐free resins. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42316.  相似文献   

6.
双环戊二烯甲基丙烯酸酯的合成及其紫外光固化性能研究   总被引:2,自引:0,他引:2  
以双环戊二烯与甲基丙烯酸为原料,在三氟化硼乙醚络合物催化剂的作用下,合成了双环戊二烯甲基丙烯酸酯(DCPMA),并用~1HNMR、FT-IR对产品进行了表征分析。结果表明:当n(甲基丙烯酸):n(双环戊二烯)=1.2:1、催化剂三氟化硼乙醚的加入量为0.6%、阻聚剂对苯二酚加入量为0.4%时,产品收率达52.5%。将DCPMA用于紫外光固化涂料中,与丙烯酸羟乙酯、甲基丙烯酸羟乙酯、2-苯氧基乙基丙烯酸酯、丙烯酸异冰片酯等4种单官能度的单体相比,涂料的固化收缩率低、固化膜的耐磨性好、附着力强、热稳定性高。  相似文献   

7.
A maleimide‐functional phenolic resin was reactively blended with an allyl‐functional novolac in varying proportions. The two polymers were coreacted by an addition mechanism through Alder‐ene and Wagner–Jauregg reactions to form a crosslinked network system. The cure characterization was done by differential scanning calorimetry and dynamic mechanical analysis. The system underwent a multistep curing process over a temperature range of 110–270°C. Although the cure profiles were independent of the composition, the presence of maleimide led to a reduced isothermal gel time of the blend. Increasing the allylphenol content decreased the crosslinking in the cured matrix, leading to enhanced toughness and improved resin‐dominant mechanical properties of the resultant silica laminate composites. Changing the reinforcement from silica to glass resulted in further amelioration of the resin‐reinforcement interaction, but the resin‐dominant properties of the composite remained unaltered. Increasing the maleimide content resulted in enhanced thermal stability. Integrating both the reactive groups in a single polymer and its curing led to enhanced thermal stability and Tg, but to decreased mechanical properties of the laminate composites. This can be attributed to a brittle matrix resulting from enhanced crosslinking facilitated by interaction of the reactive groups located on the polymer of an identical backbone structure. The cured polymers showed a Tg in the range of 170–190°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 737–749, 2001  相似文献   

8.
Photopolymerization processes are often used in industrial applications because of their solvent‐free formulations and various advantages over conventional thermal processes. Fluorinated monomers and oligomers yield coatings of great interest because of the peculiar characteristics of fluorine atoms: these coatings show hydrophobicity, chemical stability, weathering resistance, etc. Novel UV‐curable fluorinated epoxy acrylate oligomers were synthesized from 1H,1H‐perfluorohexan‐1‐ol, 1,6‐hexamethylene diisocyanate (HDI) and epoxy acrylate (EA). The HDI plays the role of a spacer group in the side chain between the EA backbone chain and the fluorinated segment. This new spacer containing a urethane moiety with long alkyl groups can exhibit a self‐organization effect through the formation of strong hydrogen bonding. This resulted in a stiffening of the whole HDI urethane–perfluoalkyl chain to form nanostructure surface segregation. The designed fluorinated EA with fluoroalkyl (C5F11) units in the side chain exhibited a contact angle of about 151°, which is in the superhydrophobic range. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Epoxy methacrylate resin (EMA) UV‐curable coatings exhibit high reactivity, low viscosity and excellent chemical resistance in environmentally friendly coatings. A novel EMA containing phthalazinone moieties for high temperature resistant UV‐curable coatings was synthesized. The formulations were cured with hexanediol diacrylate (HDDA) and trimethylol propane triacrylate (TMPTA) as reactive diluents promoted by a photoinitiator, and then interpenetrating polymer networks were generated. The mechanical, chemical and thermal properties of the clear coatings were characterized using Chinese National Standard methods (GB). EMA was used with UV radiation curing in combination with 6.7 wt% of HDDA and 13.4 wt% of TMPTA, and the properties of the cured films were as follows: pencil hardness of 5 H, 30% NaOH resistance for 30 days, 15% HCl resistance for 10 days, 3% NaCl resistance for 30 days and 5% weight loss temperature of 300.5 °C. EMA UV‐curable coatings containing phthalazinone exhibit excellent chemical and thermal stability, and could be potential candidates for UV‐curable zero volatile organic compound coatings applied in the fields of salt spray corrosion, strong radiation and high‐temperature resistance. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Photo‐polymerization behaviors of bisphenol‐A epoxy diacrylate (EPA) and six kinds of EPA‐derived resins containing different amounts of carboxylic acid, urethane, amide, and imide groups were studied by a photo differential scanning calorimetry. The dark polymerization was performed and pseudo‐steady state assumption of growing radicals was made to obtain the kinetic constants for propagation, bimolecular termination, monomolecular termination, and the concentration of growing radicals of different resins as a function of extent of reaction. Compared with EPA, it was found that the rate of polymerization and kinetic constants of the six resins were relatively small because the mobility of reacting species in resins was restricted by carboxylic acid, urethane, amide, and imide groups. Finally, three different photo‐initiators were used to initiate the polymerization, and their kinetic behaviors were compared. The effect of tertiary amine group of photo‐initiator on the rate of polymerization of resins having carboxylic acid group and the initiator efficiency were discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
The preparation of AB2 monomers via thiol‐ene click reaction from six‐ and seven‐membered unsaturated lactones is described. The hydroxyl‐functionalized valerolactone was prepared by use of Michael thiol‐ene‐addition reaction starting from 2‐mercaptoethanol and 3‐methylenetetrahydro‐2H‐pyran‐2‐on. The hydroxyl‐functionalized caprolactone was prepared radically from 2‐mercaptoethanol and 7‐allyloxepan‐2‐one. Both AB2 monomers were polymerized via ring opening in the presence of tin(II)‐2‐ethylhexanoate (Sn(Oct)2) as a catalyst yielding the hyperbranched polyesters. The new hyperbranched polyesters were analyzed by 13C NMR spectra to determine the degree of branching. © 2014 Society of Chemical Industry  相似文献   

12.
A series of polymeric photoinitiators (BP‐HPEAs) bearing BP moiety based on hyperbranched poly(ester‐amine) were synthesized via the thiol‐ene click reaction of 3‐(4‐benzoylphenoxy)propyl 2‐mercaptoacetate (BPPM) with acrylated HPEA. BPPM was obtained by the esterification of (4‐(3‐hydroxypropoxy) phenyl) phenyl methanone (HPPM) with mercaptoacetic acid in the presence of p‐toluene sulphonic acid as a catalyst. HPEA was prepared through Michael addition of piperazine with tri(hydroxymethyl)propane triacrylate. Their molecular structures were confirmed by the 1H NMR, 13C NMR, and FTIR analysis. The UV–vis spectrum analysis results showed that BP‐HPEAs exhibit the stronger n–π* absorption at ~ 340 nm with over two times higher molar extinction coefficients than BP at the concentration of 1.00 × 10?3M. The photoinitiating activity study showed that the maximum photopolymerization rates of 1,6‐hexanediol diacrylate initiated by BP‐HPEAs in the absence of coinitiator were obtained by two times higher than that by BP in the presence of triethylamine as a coinitiator. Moreover, the excellent miscibility of BP‐HPEAs with the commercial bisphenol A epoxy diacrylate was achieved according to the Ts/Tg ratios of over 9.0 from DMTA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
The UV‐curable urethane‐acrylates based on 2‐hydroxyethyl methacrylate (HEMA)‐terminated polyurethane (PU) for lithographic and coating applications are investigated in this study. Series of PU prepolymers were made from 4,4‐diphenyl methane diisocyanate (MDI), poly(propylene oxide) glycol (PPG 400), poly(butylene adipate)glycol (PBA 500), or poly(tetramethylene oxide) glycol (PTMO 1000) and are terminated with HEMA. The 2,2‐azobisisobutyronitrile (AIBN) was used as a UV‐initiator under air atmosphere. The curing kinetics of HEMA‐terminated PU film were studied. The curing analysis, using FTIR and reaction kinetics, indicate the reaction rate equation correlates well with the film thickness [T], initiator concentration [I], unreacted double bond concentration [C?C], and exposed energy [E] of the reaction system. The kinetic rate equation for the UV‐curable reaction can be written as © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3162–3166, 2004  相似文献   

14.
UV‐curable nanocomposites were prepared by the blending method or the in situ method with nanosilica obtained from a sol–gel process. The microstructure and properties of the nanocomposite coatings were investigated using 29Si‐NMR cross‐polarization/magic‐angle spinning, transmission electron microscopy (TEM), Fourier transform IR (FTIR), differential scanning calorimetry (DSC), and UV–visible (UV–vis) spectra, respectively. The NMR and TEM showed that during the blending method, tetraethyl orthosilicate (TEOS) completely hydrolyzed to form nanosilica particles, which were evenly dispersed in the polymer matrix. However, for the in situ method, TEOS partially hydrolyzed to form some kind of microstructure and morphology of inorganic phases intertwisted with organic molecules. FTIR analysis indicated that the nanocomposites prepared from the in situ method had much higher curing rates than those from the blending method. DSC and UV–vis measurements showed that the blending method caused higher glass‐transition temperatures and UV absorbance than the in situ method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1119–1124, 2005  相似文献   

15.
In the present investigation, silicon containing UV‐curable difunctional monomer was synthesized by reacting 3‐methacryloxy propyl trimethoxysilane (3‐MPTS) with acrylic acid using anhydrous ether as a solvent under inert atmosphere. The synthesized acryloxymethacryloxy silane monomer was characterized by FTIR, 1H‐NMR, and 13C‐NMR spectroscopy. The silane monomer along with 4 wt % photoinitiator (Darocure 1173) was cured under UV‐light for different exposure time. The curing characteristic of the monomer was investigated using FTIR spectroscopy. The conversion of the double bond due to curing has been evaluated from the peak intensity of the C?C double bond (at 1636 cm?1) in the FTIR spectrum considering the peak intensity at 1720 cm?1 due to C?O as internal standard. The maximum double bond conversion is observed to be 72%. The optimum cure time for the silane monomer has been estimated to be 7.8 sec. The UV‐cured sample decomposes at 440°C. The char residue is 35% at 700°C. The synthesized UV‐curable silane monomer may be useful for UV‐coating formulations, for fabrication of 3D‐objects by lithographic technique and as a precursor for organic–inorganic hybrid materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Silicone–epoxy (SiE) resins were synthesized through the hydrolytic condensation of 2‐(3,4‐epoxycyclohexylethyl) methyldiethoxysilane (EMDS) and the cohydrolytic condensation of EMDS with dimethyldiethoxysilane. Structural characterization was carried out by 1H‐NMR, 29Si‐NMR, and mass spectrometry analysis; the resins were linear oligomers bearing different numbers of pendant epoxy groups, and the average number of repeat Si O units ranged from 6 to 11. Methyhexahydrophthalic anhydride was used to cure the SiE resins to give glassy materials with high optical clarity. The cured SiE resins showed better thermal stability and higher thermal and UV resistances than a commercial light‐emitting diode package material (an epoxy resin named CEL‐2021P). The effect of the epoxy value on the thermal and mechanical properties and the thermal and UV aging performances of the cured SiE resins were investigated. The SiE resins became more flexible with decreasing epoxy value, and the resin with the moderate epoxy value had the highest thermal and UV resistances. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The tandem nucleophilic addition‐cyclization reaction of o‐alkynylbenzaldehydes or o‐alkynylacetophenones 2 with dialkyl phosphites or dialkyl phosphonothioates 1 took place very smoothly in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) in THF at room temperature. In all cases, the reaction proceeded in a regioselective manner leading to the 5‐exo‐dig products 3 in excellent yields. The phenomenon of a 1,5‐sigmatropic hydrogen shift or a 1,5‐sigmatropic methyl shift was observed in this reaction depending on the different substituent groups such as R3 in the o‐alkynylbenzaldehyde or o‐alkynylacetophenone 2 substrates.  相似文献   

18.
UV‐curable, organic–inorganic hybrid materials were synthesized via sol–gel reactions for tetraethylorthosilicate, and methacryloxypropyl trimethoxysilane in the presence of the acrylated phenylphosphine oxide resin (APPO) and a bisphenol‐A‐based epoxy acrylate resin. The sol–gel precursor content in the hybrid coatings was varied from 0 to 30 wt %. The adhesion, flexibility, and hardness of the coatings were characterized. The influences of the amounts of inorganic component incorporated into the coatings were studied. Results from the mechanical measurements show that the properties of hybrid coatings improve with the increase in sol–gel precursor content. In addition, thermal properties of the hybrids were studied by thermogravimetric analysis in air atmosphere. The char yield of pure organic coating was 32% and that of 30 wt % silicate containing hybrid coating was 30% at 500°C in air atmosphere. This result demonstrates the pronounced effect of APPO on the flame retardance of coatings. Gas chromatography/mass spectrometry analyses showed that the initial weight loss obtained in thermogravimetric analysis is due to the degradation products of the photoinitator and the reactive diluent. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1906–1914, 2006  相似文献   

19.
A series of ultraviolet‐curable hybrid materials was first synthesized here by sol–gel process based on tetraethoxysilane (TEOS) and polyurethane acrylate/epoxy acrylate resin. The functional groups in the hybrid materials were investigated by infrared spectroscopy (IR) analysis. The crystallinity of the hybrid materials and polymer resin was examined by X‐ray diffraction. Then, nearly uniform dispersion of SiO2 particles with the diameters ?100 nm were revealed by field emission scanning electron micrographs. The surface morphology was scanned by atomic force microscope. And, thermal stability was measured by thermogravimetric analysis for hybrid materials produced from different mass ratio of TEOS to polymer. The results show that the hybrid material from the mass ratio of TEOS to polymer of 0.4 : 1 performed desirable optimal thermal stability and uniform microstructure which is suitable for optical fiber coating in high temperature application. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
A series of UV‐curable nanocomposites were prepared with 3‐(trimethoxysilyl) propyl methacrylate (MPS) modified nanosilica under the initiation of 2,2‐dimethoxy‐1,2‐diphenylethan‐1‐one. It was found that MPS‐modified nanosilica together with free MPS could form transparent nanocomposite coats. As the particle size of nanosilica increased, the photopolymerization rate, final double bond conversion, and tack‐free time of nanocomposites increased while the surface roughness, glass‐transition temperature, and UV absorbance of nanocomposites decreased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2274–2281, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号