首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The melt flow properties during capillary extrusion of nanometre‐calcium‐carbonate‐filled acrylonitrile–butadiene–styrene (ABS) copolymer composites were measured by using a Rosand rheometer to identify the effects of the filler content and operation conditions on the rheological behaviour of the sample melts. The experiments were conducted under the following test conditions: temperature varied from 220 to 240 °C and shear rate ranged from 10 to 104 s?1. The filler volume fractions were 0, 10, 20, 30, 40 and 50%. The results showed that the shear flow did not strictly obey the power law under the test conditions, and that the entry pressure drop (ΔPen) and the extension stress (σe) in entry flow increased nonlinearly, while the melt shear viscosity (ηs) and extension viscosity (ηe) decreased with increasing the wall shear stress (τw) at constant test temperature. The dependence of the melt shear viscosity on the test temperature was approximately consistent with the Arrhenius expression at fixed τw. When τw was constant, ηs and ηe increased while ΔPen and σe decreased with the addition of the filler volume fraction. © 2002 Society of Chemical Industry  相似文献   

2.
Rheological properties of metallocene‐catalyzed isotactic polypropylenes (MET‐PP) were evaluated in comparison with those of Ziegler–Natta‐catalyzed isotactic polypropylenes (ZN‐PP) and MET‐PP was generally characterized in a rheological aspect. Based on the characterization, various flow processibilities and their effect on the higher order structure and product properties of the processed article were estimated. The capillary flow properties at various temperatures, elongational flow properties, and dynamic viscoelasticities of MET‐PPs and ZN‐PPs with various melt flow indexes (MFIs) were measured. Furthermore, as an example of application of rheological analysis, the selection of proper raw resin and processing conditions in the sheet‐extrusion of MET‐PP was studied. MET‐PP shows the following rheological features due mainly to the narrow molecular weight distribution in comparison with ZN‐PP with equivalent MFI to that of MET‐PP: while the viscosities at low shear rates are lower, those at high shear rates are higher. Although there is little difference in the loss modulus G″ (viscosity), the storage modulus G′ (elasticity) is very (about one decade) lower. The die swell is much smaller. The entrance pressure loss and end correction coefficient are lower. The critical shear rate at which a melt fracture begins to occur is lower. The melt tension, elongational viscosity, and melt flow index ratio are lower. The flow activation energy is slightly lower. The zero‐shear viscosity obeys the 3.4th‐power law independent of catalyst. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2157–2170, 2002  相似文献   

3.
An experimental study of the rheological behavior of ethylene–octene copolymer vulcanizates in extrusion containing blowing agent has been carried out. The cell morphology development has been studied through a scanning electron microscope. Rheological properties of unfilled and precipitated silica‐filled systems with variations of blowing agent, extrusion temperature, and shear rate have been studied by using a Monsanto processibility tester (MPT). The total extrusion pressure (PT), apparent shear stress (τwa), apparent viscosity (ηa), and die swell (%) of the unfilled and silica‐filled compounds have been determined by using MPT. The effect of blowing agent (ADC) on the rheological properties of the vulcanizates has also been investigated. There is a reduction of stress and viscosity with blowing agent loading. It was observed that the incorporation of a blowing agent led to decreased shear thinning behavior resulting in an increase in power law index. The viscosity reduction factor (VRF) of unfilled vulcanizates is found to be dependent on the concentration of the blowing agent, shear rate, and temperature, whereas VRF of silica‐filled vulcanizates is found to be dependent on shear rate, temperature, and blowing agent concentration. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1132–1138, 2003  相似文献   

4.
The melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variation of melt viscosity with shear rate and shear stress at different temperatures was studied. The effect of relative composition of component fibers on the overall rheological behavior also was examined. A temperature range of 130 to 150°C and shear rate of 16.4 to 5470 s?1 were chosen for the analysis. The melt viscosity of the hybrid composite increased with increase in the volume fraction of glass fibers and reached a maximum for the composite containing glass fiber alone. Also, experimental viscosity values of hybrid composites were in good agreement with the theoretical values calculated using the additive rule of hybrid mixtures, except at low volume fractions of glass fibers. Master curves were plotted by superpositioning shear stress and temperature results. The breakage of fibers during the extrusion process, estimated by optical microscopy, was higher for glass fiber than sisal fiber. The surface morphology of the extrudates was analyzed by optical and scanning electron microscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 432–442, 2003  相似文献   

5.
ABS (acrylonitrile–butadiene–styrene) terpolymer is a two-phase thermoplastic with SAN (styrene–acrylonitrile) copolymer constituting the continuous phase (matrix). The flow properties of ABS with varying molecular parameters were studied using a capillary viscometer at the shear rate range encountered in its processing. The viscosity-average molecular weights (Mv) of matrix SAN with 26% acrylonitrile content are in the range of 90,000 to 150,000, and Mv of poly-butadiene-are in the range of 150,000 to 170,000. The weight-average molecular weight of the matrix SAN is the main controlling factor for the flow properties of ABS at low shear rate, while the molecular weight distribution of the matrix SAN becomes increasingly important with the increase of shear rate. The presence of SAN grafted polybutadiene increases the melt viscosity of ABS by 40–60% over comparable free SAN copolymer and also decreases the activation energy at constant shear stress to 24–25 kcal/mole from the 33–36 kcal/mole for free SAN. The die swell of ABS and SAN can be correlated with the dynamic shear modulus G′, and the melt fracture of ABS and SAN starts at G′ equal to 3.6 × 106 dynes/cm2.  相似文献   

6.
A pulse pressure was superimposed on the melt flow in extrusion, called vibration extrusion. A die (L/D = 17.5) was attached to this device to study the rheological properties of an amorphous polymer (ABS) and semicrystalline polymer (PP, HDPE), prepared in the vibration field, and the conventional extrusion were studied for comparison. Results show that the melt vibration technique is an effective processing tool for improving the polymer melt flow behavior for both crystalline and amorphous polymers. The enhanced melt rheological property is also explained in terms of shear thinning criteria. Increasing with vibration frequency, extruded at constant vibration pressure amplitude, the viscosity decreases sharply, and so does when increasing vibration pressure amplitude at a constant vibrational frequency. The effect of vibrational field on melt rheological behavior depends greatly on the melt temperature, and the great decrease in viscosity is obtained at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5292–5296, 2006  相似文献   

7.
The effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite‐filled injection molding grade high‐density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (τc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of τc and decreases compressibility of the melt. An increase in temperature also raises the value of τc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.  相似文献   

8.
The effects of filler content and its surface treatment on the melt flow properties of A‐glass bead‐filled poly(propylene) (PP) composites have been investigated using a capillary rheometer at a wide apparent shear rate scope of 150 to 7 200 s–1 and a temperature range of 160 to 200°C. It was found that the melt shear flow obeyed roughly the power law. The melt shear viscosity (ηw) of the treated glass bead‐filled system with a silane coupling agent was somewhat higher than that of the raw glass bead‐filled system when both the systems were subjected to the same test conditions. The increase of the resistance to flow and flow satiability for the former system can be attributed to the improvement of the compatibility and interfacial adhesion between the filler and matrix as well as the dispersion of the filler in the matrix due to the surface treatment of the glass beads. The dependence of ηw on temperatures can be expressed with an Arrhenius relationship. The temperature sensitivity of ηw for the composite melts is greater than that of the unfilled PP. Furthermore, ηw increases obviously with the volume fraction (ϕf) of the fillers at lower shear rates, while the dependence of ηw on ϕf decreases with the increase of shear rates. This is attributable to the increase of the ability of relative movement between the filler and matrix melt at high extrusion rates.  相似文献   

9.
The rheological behavior of polyester recycled tire fibers (RTF) mixed with ground tire rubber and linear low density polyethylene (LLDPE) with and without styrene–ethylene–butylene–styrene grafted maleic anhydride (SEBS‐g‐MA) as a compatibilizer was investigated in the melt (small amplitude oscillatory shear) and solid (dynamic mechanical analysis) states. In particular, the effect of RTF content (10, 25, and 50 wt %), extrusion screw speed (110, 180, and 250 rpm), and temperature profiles (extrusion and injection molding) was studied. In general, it was found that the rheological properties in the melt state (modulus and viscosity) of the uncompatibilized samples increased with RTF content, but higher values were obtained when SEBS‐g‐MA was added due to better interfacial coupling. Although similar results were obtained in the solid state, it was shown that melt rheology can better explain the variations as the measurements are more sensitive to the interface quality since the matrix contribution is less important. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46563.  相似文献   

10.
Poly(lactic) acid (PLA) is a biodegradable polymer that has attracted interest as a potential substitute for some thermoplastic polymers. However, its advanced brittleness at room temperature represents one of the major drawbacks for its general use. In this work, PLA was modified by reactive extrusion (PLAREx) to enhance the rheological behaviour and to limit its degradation. The modified material was melt blended with acrylonitrile–butadiene–styrene (ABS), and the resultant morphology, rheological, thermo‐mechanical and fracture behaviour were analysed. Since PLA does not have reasonable compatibility with ABS, maleic‐anhydride‐grafted ABS (ABS‐g‐Ma) was used as compatibilizer. The morphology of the PLAREx/ABS samples resulted in the formation of small ABS rods in the matrix. The presence of maleic anhydride contributed to reducing the interfacial energy of the blends and to obtaining finer micro‐domains of the ABS‐rich phase in the PLAREx matrix. In the compatibilized blends, the presence of elongated ABS‐rich phases opposed free crack propagation and contributed to the increase in fracture energy in comparison to neat PLA. © 2020 Society of Chemical Industry  相似文献   

11.
In this study, the flow properties and die‐swell ratios (B's) of two kinds of rubber compounds (SI was a calcium carbonate filled natural rubber compound, and SII was a carbon‐black‐filled natural rubber/butadiene–styrene rubber/cis‐1,4‐butadiene rubber compound) in a short‐tube extrusion flow were measured by means of a capillary rheometer under test conditions with a temperature of 90°C and an apparent shear rate varying from 10 to 4000 s?1 to identify the effects of extrusion conditions on the rheological behavior of the materials and to estimate B. The shear flow roughly obeyed the power law, whereas B increased nonlinearly with increasing extrusion rate. Under the same shear rates, the viscosity of SII was higher than that of SI, whereas the values of B of SI were higher than those of SII. Furthermore, B of the rubber compounds was estimated by means of an extrudate swell equation published in a previous work. The results show that the predictions of B were close to the measured data from the experiments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Abstract

The melt flow properties of a linear low-density polyethylene (LLDPE) were measured by means of a capillary rheometer under the experimental conditions of temperatures from 220° to 260°C and apparent shear rates varying from 12 to 120 s?1. The end pressure drop (ΔP end) was determined by employing the Bagley's plotting method. The results showed that ΔP end increased nonlinearly with increasing shear stress. The end pressure fluctuation phenomenon was observed at lower shear stress level, and several plateau regions were generated in the end pressure drop-shear stress curves, suggesting onset of the wall-slip phenomenon during die extrusion of the resin melt. The critical shear stress with onset end pressure fluctuation phenomenon increased with a rise of temperature. Furthermore, the melt shear flow did not strictly obey the power law. The melt shear viscosity decreased nonlinearly with increasing shear stress and with a rise of temperature, whereas the dependence of the melt shear viscosity on the test temperature accorded with a formula similar to the Arrhenius expression.  相似文献   

13.
Blends of polycarbonate (PC) and poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) with different compositions are characterized by means of dynamic mechanical measurements. The samples show phase separation. The shift in the temperatures of the main dynamic mechanical relaxation shown by the blend with respect to those of the pure components is attributed to the migration of oligomers present in the ABS toward the PC in the melt blending process. A comparison with other techniques (dielectric and calorimetric analysis) and the application of the Takayanagi three block model confirm this hypothesis. In all the studied blend compositions (ABS weight up to 28.6%) the PC appears as the matrix where a disperse phase of ABS is present. The scanning and transmission electron microscopy micrographs show that the size of the ABS particles increases when the proportion of ABS in the blend increases. The FTIR results indicate that the interaction between both components are nonpolar in nature and can be enhanced by the preparation procedure. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1507–1516, 2002  相似文献   

14.
A study utilizing isotactic poly(4‐methyl‐1‐pentene) (PMP) was undertaken to investigate a three‐stage process (melt‐extrusion/annealing/uniaxial‐stretching) (MEAUS) employed to produce microporous films. The results of this study will be reported in the course of two articles. In this first part, three PMP resins were melt‐extruded into tubular films (blowup ratio; BUR = 1), where the resins each differ in weight‐average molecular weight (Mw). Specific attention was focused upon the morphological and crystal orientation results as a function of the melt‐relaxation times as influenced by the resin characteristics and the processing parameters. The results of a number of melt‐extrusion conditions are presented. A stacked lamellar morphology was obtained in each case; however, the type of stacked lamellar morphology, planar or twisted, and the orientation state was found to depend upon both the resin characteristics, specifically Mw, and the melt‐extrusion conditions. Atomic force microscopy and wide‐angle X‐ray scattering (WAXS) were the main techniques utilized to study the melt‐extruded films, while oscillatory shear measurements, in conjunction with a Carreau–Yasuda analysis, aided in differentiating the melt‐flow behavior of the three resins. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2095–2113, 2002  相似文献   

15.
Nanosized calcium carbonate (nano‐CaCO3)‐filled poly‐L ‐lactide (PLLA) biocomposites were compounded by using a twin‐screw extruder. The melt flow behavior of the composites, including their entry pressure drop, melt shear flow curves, and melt shear viscosity were measured through a capillary rheometer operated at a temperature range of 170–200°C and shear rates of 50–103 s?1. The entry pressure drop showed a nonlinear increase with increasing shear stress and reached a minimum for the filler weight fraction of 2% owing to the “bearing effect” of the nanometer particles in the polymer matrix melt. The melt shear flow roughly followed the power law, while the effect of temperature on the melt shear viscosity was estimated by using the Arrhenius equation. Hence, adding a small amount of nano‐CaCO3 into the PLLA could improve the melt flow behavior of the composite. POLYM. ENG. SCI., 52:1839–1844, 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
The studies of the elastic behavior in the capillary flow of LDPE/HDPE blend melts were carried out at a test temperature range from 180 to 200°C and at an apparent shear rate of about 25–120 s−1. The end‐pressure drop (ΔPend) increased nonlinearly with increasing wall shear stress (τw) and achieved a minimum value at a weight fraction (ϕHD) of HDPE of 50%. The die‐swell ratio (B) increased basically linearly with increasing τw or ΔPend and achieved a maximum value at ϕHD of 50%. With the addition of the die length–diameter ratio, the values of B were decreased linearly. At a low shear rate, the temperature sensitivity of the melt die‐swell was more significant than at a high shear rate. With increasing ϕHD, B increased when ϕHD < 50%, then decreased. B reached a maximum value at ϕHD of 50% and a fixed apparent shear rate. This phenomenon may be explained by using the theory of viscoelastic competition between components of polymer blend melts. Furthermore, the first normal stress difference (N1) of the sample melts was estimated by using an equation published in a previous work. The results showed that B increased linearly with increasing N1. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 759–765, 2000  相似文献   

17.
Prediction of the screw horsepower requirement involves, among many others, the calculation of the shear stress (τs) between the solid polymer and the barrel surface during melting. Prediction of the solid bed down-channel velocity also requires the calculation of τs. However, the pseudoplastic nature and strong temperature dependence of melt viscosity make the mathematics of calculating τs extremely difficult. As a first step of developing a reasonable mathematical model for calculating τs, experimental measurements of τs were made over a wide range of metal temperature and sliding speed for five commercial polymers using molded, block samples. Although dependences of τs on metal temperature and sliding speed were found to have similar functionality to those of the dependences of melt viscosity on melt temperature and shear rate, this study showed that τs could not be expressed as a sole function of the melt rheological properties. Our subsequent study, to be reported in a follow up paper, will show that τs must be expressed as a function of the thermodynamic properties and melt density of the polymer as well as the melt rheological properties and the melting conditions.  相似文献   

18.
The structure development, rheological behavior, viscoelastic, and mechanical properties of dynamically cured blend based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with a ratio of 60/40 by weight were studied. The variation of two‐phase morphology was observed and compared as the level of curing agent was increased. Meanwhile, as the level of curing agent increased, viscosity as a function of shear stress always increased at a shear stress range of 2.2 × 104 to 3.4 × 105 Pa at the temperature of 200°C, yet viscosity of the blend approached each other at high shear stress. Dynamic mechanical spectra at different temperatures show that dynamic modulus (E′) of the blend exhibits two drastic transitions corresponding to glass transition temperature (Tg) of EPDM and Tg of PP, respectively. In the blends Tgs of EPDM increase and Tgs of PP almost remain unchangeable with an increase in curing agent level. Tensile strength increased, yet elongation at break decreased as the level of curing agent is increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 357–362, 2004  相似文献   

19.
Glycidyl methacrylate functionalized acrylonitrile–butadiene–styrene (ABS‐g‐GMA) particles were prepared and used to toughen polylactide (PLA). The characteristic absorption at 1728 cm?1 of the Fourier transform infrared spectra indicated that glycidyl methacrylate (GMA) was grafted onto the polybutadiene phase of acrylonitrile–butadiene–styrene (ABS). Chemical reactions analysis indicated that compatibilization and crosslinking reactions took place simultaneously between the epoxy groups of ABS‐g‐GMA and the end carboxyl or hydroxyl groups of PLA and that the increase of GMA content improved the reaction degree. Scanning electron microscopy results showed that 1 wt % GMA was sufficient to satisfy the compatibilization and that ABS‐g‐GMA particles with 1 wt % GMA dispersed in PLA uniformly. A further increase of GMA content induced the agglomeration of ABS‐g‐GMA particles because of crosslinking reactions. Dynamic mechanical analysis testing showed that the miscibility between PLA and ABS improved with the introduction of GMA onto ABS particles because of compatibilization reactions. The storage modulus decreased for the PLA blends with increasing GMA content. The decrease in the storage modulus was due to the chemical reactions in the PLA/ABS‐g‐GMA blends, which improved the viscosity and decreased the crystallization of PLA. A notched impact strength of 540 J/m was achieved for the PLA/ABS‐g‐GMA blend with 1 wt % GMA, which was 27 times than the impact strength of pure PLA, and a further increase in the GMA content in the ABS‐g‐GMA particles was not beneficial to the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The effect of chemical modification of both fiber and matrix on melt rheological behavior of intimately mixed short sisal–glass hybrid fiber‐reinforced low‐density polyethylene composites was studied with an Instron capillary rheometer. The variations of melt viscosity with different shear rate and shear stress values for different temperatures were studied. A temperature range of 130 to 150°C and shear rates of 16.4 to 5468 s?1 were chosen for the analysis. Chemical modifications with stearic acid, maleic anhydride, silane, and peroxides were tested for their ability to improve the interaction between the matrix and fiber. The viscosity of the hybrid composites increases with every chemical modification. In the case of peroxide‐treated composites, the increase can be attributed to the peroxide‐induced grafting of the polyethylene matrix to the fiber surface and to the crosslinking of the polyethylene matrix. These phenomena are both activated by temperature, whereas temperature causes a reverse effect for all other chemical modifications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 443–450, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号