首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Multi‐media support is an important feature of third generation (3G) wireless communication systems, and Quality of Service (QoS) is a crucial issue, as in any other networking environment. In this paper, the QoS issues in the wireless last‐mile is investigated for 3G systems based on Wideband‐Code division multiple access (W‐CDMA). Supporting multiple rates in the CDMA environment introduces the power assignment problem, which is coupled with the bandwidth and error QoS parameters. Also, multi‐media traffic flows should be classified and serviced in such a way to provision delay guarantees. In this paper, a new framework, namely dynamic resource scheduling (DRS), is described and extensively studied. In order to serve multi‐media services with different requirements, a family of nine algorithms has been developed within the DRS framework. These algorithms can be categorized with respect to single or prioritized queuing architectures, fixed or variable rate bandwidth and power allocation, and variable spreading gain or multi‐code spreading strategies. The paper presents the performance of the DRS algorithms in comparison with each other and with conventional scheduled‐CDMA (S‐CDMA) and proposed schemes in the W‐CDMA standard. The performance for error and throughput QoS provisioning and power control dynamics are explored; advantages, disadvantages and limitations of the algorithms are discussed. The DRS framework is concluded to be a promising QoS architecture, with a simple, flexible, scalable structure that can be configured according to a given traffic scenario. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
We develop product form traffic models for single- and multiple-cell code-division multiple-access (CDMA) networks with multiple classes of mobile subscribers. The key feature of this development is the specification of a flexible call admission control procedure that details the numbers of mobiles of each class in each cell that the system operator should allow in order to maintain an acceptable quality of service. Effective bandwidth techniques from the analysis of statistical multiplexing at an asynchronous transfer mode (ATM) based broadband integrated services digital network (ISDN) link are used to give performance guarantees that overcome the variability in interference levels characteristic of CDMA cellular networks. The result is an admissible region bounded by a finite number of hyperplanes and a simple and efficient call admission policy. The CDMA mobile network, operating within the admissible region described, has a very similar form to a circuit-switched network operating with fixed routing. This similarity allows the existing traffic modeling techniques and network management strategies for general loss networks to be applied to CDMA mobile cellular networks. In particular, with standard assumptions on the call arrival processes and holding times, the stationary state distribution has a product form on the truncated state space defined by the call admission strategy  相似文献   

3.
In this paper, the performance of a code-division multiple-access (CDMA) cellular system with various traffic types is examined. Traffic integration and resource management are two major issues in the design of the next generation of wireless networks with integrated services. To provide design guidelines for traffic integration, the impact of the line rate (actual transmission bit rate in the radio channel) selection on the system capacity is examined. Since in a CDMA system the signal from one specific user is spread over the entire available bandwidth, the actual bandwidth resource occupied by a user depends on the amount of the transmission power of the user. In this paper, we also address how to assign suitable power levels to the different traffic types. A method for optimizing the power assignment for multiple traffic types is developed  相似文献   

4.
We propose a novel concept of cross-layer effective bandwidth that characterizes the unified resource usage taking into account both physical layer linear minimum mean square error (LMMSE) receivers and statistical characteristics of the packet traffic in code division multiple access (CDMA) networks. Based on the concept of cross-layer effective bandwidth, we develop an optimal connection admission control (CAC) scheme for variable bit rate packet traffic with QoS constraints at both physical and network layers. By introducing a small signal-to-interference ratio (SIR) outage probability using the concept of cross-layer effective bandwidth, the capacity of CDMA networks in the proposed CAC scheme can be increased significantly compared to some existing schemes. The effectiveness of the proposed approaches is demonstrated by numerical examples.  相似文献   

5.
The paper considers the application of a direct sequence code division multiple access (CDMA) scheme to a mobile meteor burst communication network. It is shown that a CDMA scheme solves the significant multiple-access problem caused by low channel diversity when remote station nodes are closely spaced. The CDMA scheme is shown to provide low waiting times and high throughput for networks of many thousands of nodes. A comparison of the CDMA scheme to a random frequency division multiple access scheme is provided where the offered traffic load, network size, system bandwidth, and interference levels are varied  相似文献   

6.
A “multiwavelength” scheme has been proposed to support large numbers of subscribers and simultaneous users in optical code-division multiple-access (CDMA) networks without using very large bandwidth expansion or the need of complicated and not-yet-feasible optical processing. In this paper, multiwavelength optical orthogonal codes (MWOOCs), which consist of two-dimensional codewords (or matrices) with every pulse of a codeword encoded in a distinct wavelength, are constructed for this scheme. MWOOCs have larger cardinality than the one-dimensional codes used in the hybrid wavelength-division multiple-access (WDMA) and CDMA scheme. With the same hardware configuration, our analysis shows that the multiwavelength scheme, in general, performs better than the hybrid scheme, particularly when the traffic load is heavy. However, if a central controller (i.e., under the best scenario) is used to uniformly distribute all available wavelengths to simultaneous users in the hybrid scheme, both schemes have comparable performance for a medium traffic load and the hybrid scheme can theoretically achieve error-free transmission when the load is light. In addition, using multiple wavelengths, the requirements of fiber ribbons and multiple stars in temporal/spatial optical CDMA networks are eliminated  相似文献   

7.
The new concepts of adaptive time hopping and variable frame code division (CDMA) multiple access are introduced. By a unified analysis, the probabilities of bit and packet errors in multipath fading environment for five time division (TDMA), code division, and time hopping (TH) related multiaccess networks are obtained; namely, TDMA, CDMA, CDMA/TDMA, Adaptive CDMA/TH, and variable frame CDMA/TDMA networks. The delay and useful throughputs of the five systems are also evaluated for data and voice traffic. All systems compared have the same channel power and bandwidth and support the same traffic. Though implementation issues are not covered, CDMA systems are put at a disadvantage (compared to cellular-type FDMA networks, for example) by ignoring such inherent advantages as voice silence utilizations and automatic frequency reuse. Nontheless, two CDMA systems outperform TDMA systems at low and medium input traffics  相似文献   

8.
We propose and evaluate a medium-access control (MAC) protocol for synchronous cellular packet direct-sequence code-division multiple-access (DS/CDMA). The protocol is designed for handling a variety of multimedia traffic types in an integrated wireless-access network (IWAN). For instance, the protocol is suited for carrying multiple traffic types of different priorities. An analytical model for the equilibrium state has been developed for the proposed protocol. A comparative evaluation of the protocol is done for three different radio frequency bandwidths currently under consideration for personal communication services (PCS), i.e., 1.25 MHz, 5 MHz, and 10 MHz. Our results demonstrate that the proposed protocol is both robust and flexible for the intended IWAN applications. It offers a significant multiplexing gain as the bandwidth increases  相似文献   

9.
The future wireless communication systems ought to offer high spectral efficiency and flexibility to carry multimedia services with variable rate requirements. The data rate change should be made scalable, continuous and real‐time based to match exactly to what required in different content for conservation of precious bandwidth. The rate change in multiples of two, as implemented in the UMTS W‐CDMA standard, is clearly undesirable. In particular, the multiple access technique itself should support asymmetrical traffic in up‐ and down‐links to fit different connection modes of Internet‐based applications. This paper is to propose an innovative CDMA architecture based on complete complementary (CC) codes, which can address all above concerns. The architecture makes use of ‘offset‐stacked’ spreading modulation, based on which both high spectral efficiency and flexible rate matching are guaranteed. The proposed CC–CDMA system can support continuously alterable data rates, which can match exactly to the user demand without the need of complex ‘rate‐matching’ algorithms. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Like its wireless counterpart, optical code-division multiple access (optical CDMA) offers greater scalability than other optical multiplexing schemes and provides flexible quality of service, physical layer privacy and asynchronous access . However, unlike wireless CDMA, high bit-rate optical CDMA networks use much higher bandwidth, which cannot be effectively processed with modern electronics rendering many earlier developed detection schemes inapplicable. In this paper we show both theoretically and experimentally that conventional electronics-based detection is inefficient in optical CDMA networks and limits the total network throughput by the bandwidth of the photodetector used. As a solution, we show that network performance can be greatly improved using ultrafast all-optical signal processing for signal detection. Recently developed all-optical thresholding devices performing cubic transformation allow for more than seven times increase in throughput for typical network parameters. A comprehensive comparison of different detection methods for optical CDMA including optimized electronics-based and all-optical signal processing-based is given for the first time.   相似文献   

11.
This paper proposes a code division multiple access (CDMA) time division duplex (TDD) system for wireless multimedia services with traffic unbalance between uplink and downlink. In the proposed system, the number of uplink time slots in a TDD frame differs from that of downlink. Moreover, the difference can be reset by the network operator according to the traffic pattern. We evaluate the performance of the proposed system under multimedia environment using Markov analysis and computer simulation. The results show that the frequency utilization is maximized even when the uplink and downlink traffic volumes are unbalanced. This, in turn, reduces drastically the blocking rate of multimedia calls (connections) in the proposed system compared with that in the traditional CDMA systems where the uplink and downlink use equal bandwidth  相似文献   

12.
Brussaard  G. 《Electronics letters》1999,35(8):613-614
The capacity and throughput of an ATM-based CDMA system offering flexible access rates on demand are analysed. Extending the existing analysis of traffic capacity of a power-controlled CDMA cellular system, it is shown that offering multiple access rates may result in higher throughput efficiency. An example given of a satellite system shows that the gain in capacity may be some 10%  相似文献   

13.
A satellite switched CDMA system for fixed service communications   总被引:2,自引:0,他引:2  
Satellite-switched code-division multiple access is a system proposed for geostationary fixed satellite service. SS/CDMA provides both multiple access and switching to a multibeam satellite. In this article we present the system architecture and performance. The SS/CDMA consist of the common air interface (CAI) and the onboard code switching mechanism. The CAI provides signaling control and traffic channels. Traffic channel access and modulation is based on a spectrally efficient CDMA scheme. The satellite code-division switch (CDS) routes calls from an uplink to a downlink beam without onboard demodulation and channel decoding. This system operates with demand assignment control; that is, channel bandwidth and switch connections are only assigned per user request. The system can offer a wide variety of bit rates with wireline quality of service. The services provided are circuit-switched calls for voice data and video, and packet-switched for data. As shown, the proposed SE-CDMA can achieve high capacity and very low bit error rates at low signal-to-noise ratio. Also, the innovative switching technique can provide low complexity and achieve high throughput for all services  相似文献   

14.
The wavelet packets based multicarrier (MC) multicode (MCD) code‐division multiple‐access (CDMA) transceiver consists of the MCD part, which ensures the transmission for high speed and flexible data rate; the MC part contributing to robustness to frequency‐selective fading and flexibility for handling multiple data rates; and wavelet packets (WPs) modulation technique, which contributes to the mitigation of the interference problems. As WPs have lower sidelobes compared with sinusoidal carriers, this system is very effective in reducing the problem of inter‐carrier interference. Of course, like any CDMA system, the system can suppress a given amount of interference. This paper considers an interference suppression scheme which will enhance the performance of the system. The receiver employs suppression filters to mitigate the effect of narrow‐band jammer interference. The framework for the system and the performance evaluation are presented in terms of the bit error rate and the outage probability over a Nakagami fading channel. Also, we investigate how the performance is influenced by various parameters, such as the number of taps of the suppression filter and the ratio of narrow‐band interference bandwidth to the spread‐spectrum bandwidth. Finally, the performance of the system is compared with the performance of sinusoidal based MC/MCD‐CDMA system denoted Sin‐MC/MCD‐CDMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
We present a new TDMA-based scheme intended for carrying traffic withdiverse QoS requirements in mobile environments, e.g.,Personal Communication Systems (PCS).In contrast to mostother TDMA protocols for mobile applications, instead oftrying to fit the offered traffic to the slot size, our solution adaptsthe slot size to the offered traffic.This feature is combined with a dynamic and responsive bandwidth scheduler.As demonstrated by our performance studies, the proposedscheme is more flexible and incurs lower bandwidth overhead than otherTDMA-based solutions.  相似文献   

16.
A frequency division duplex (FDD) wideband code division multiple access (CDMA) medium access control (MAC) protocol is developed for wireless wide area multimedia networks. In order to reach the maximum system capacity and guarantee the heterogeneous bit error rates (BERs) of multimedia traffic, a minimum-power allocation algorithm is first derived, where both multicode (MC) and orthogonal variable spreading factor (OVSF) transmissions are assumed. Based on the minimum-power allocation algorithm, a multimedia wideband CDMA generalized processor sharing (GPS) scheduling scheme is proposed. It provides fair queueing to multimedia traffic with different QoS constraints. It also takes into account the limited number of code channels for each user and the variable system capacity due to interference experienced by users in a CDMA network. To control the admission of real-time connections, a connection admission control (CAC) scheme is proposed, in which the effective bandwidth admission region is derived based on the minimum-power allocation algorithm. With the proposed resource management algorithms, the MAC protocol significantly increases system throughput, guarantees BER, and improves QoS metrics of multimedia traffic.  相似文献   

17.
We propose and investigate a new type of satellite multiple access protocol that combines the characteristics of the spread slotted (SS)-ALOHA protocol, code division multiple access (CDMA), and the hybrid automatic repeat request (ARQ) error controlling and retransmission scheme, in order to increase the throughput by reducing the number of retransmissions and to keep the bit error rate (BER) of the satellite link low when the channel experiences heavy traffic. The main feature of our proposed system is the utilization of two different fields in the analysis of the satellite multiple access problem. Since the hub now possesses the forward error correction (FEC) capability to correct errors that appear after the CDMA despreading of the packets, the satellite does not need to ask so often for the retransmission of erroneous packets and will ask for retransmission only when the FEC error correcting capability is exceeded. This paper also presents the adaptive optimization of the balance between the CDMA processing gain and FEC coding gain in order to obtain a better throughput for the SS-CDMA/ALOHA with hybrid ARQ protocol for satellite multiple access. The optimization is made with the constraint of keeping the bandwidth of the transmitted packets constant during all times. According to this, the effective throughput of the protocol (information bits over total transmitted bits ratio) is improved by adaptively changing the CDMA and FEC codes used in the transmission. This adaptive optimization is done by observing the channel status or load and increasing or decreasing both coding schemes' gains. Computer simulations show the performance of the proposed multiple access scheme  相似文献   

18.
Use of code division multiple access (CDMA) in conjunction with slotted ALOHA improves throughput, since some of the "collided" packets can be retrieved, although at the expense of enlarged bandwidth. In view of the feasibility of recovery of packets, such schemes are attractive to carry receiver-to-transmitter acknowledgment (ACK) traffic also. The presence of ACK traffic is known to significantly reduce the throughput of slotted ALOHA channels. In this correspondence, the impact of such ACK traffic on the performance of slotted ALOHACDMA schemes is examined in detail for both finite and infinite terminal population.  相似文献   

19.
The need for efficient interconnect architectures beyond the conventional time-division multiplexing (TDM) protocol-based interconnects has been brought on by the continued increase of required communication bandwidth and concurrency of small-scale digital systems. To improve the overall system performance without increasing communication resources and complexity, this paper presents a cost-effective interconnect architecture, communication protocol, and signaling technology that exploits parallelism in board-level communication, resulting in shorter latency and higher concurrency on a shared bus or link: the proposed source synchronous CDMA interconnect (SSCDMA-I) enables dual concurrent transactions on a single wire line as well as flexible input/output (I/O) reconfiguration. The SSCDMA-I utilizes 2-bit orthogonal CDMA coding and a variation of source synchronous clocking for multilevel superposition; a single 3-level SSCDMA-I line operates as if it consists of dual virtual time-multiplexed interconnects, which exploits communication parallelism with a reduced number of pins, wires, and complexity. The unique multiple access capability of the SSCDMA-I improves real-time communication between multiple semiconductor intellectual property (IP) blocks on a shared link or bus by reducing the bus contention interference from simultaneous traffic requests and by taking advantage of shorter request latency. The prototype transceiver chip is implemented in 0.18-m CMOS and the 10-cm test PC board system achieves an aggregate data rate of 2.5 Gb/s/pin between four off-chip (2Tx-to-2Rx) I/Os.  相似文献   

20.
This paper considers optimizing the utilization of radio resources in a heterogeneous integrated system consisting of two different networks: a wireless local area network (WLAN) and a wideband code division multiple access (CDMA) network. We propose a joint session admission control scheme for multimedia traffic that maximizes overall network revenue with quality of service (QoS) constraints over both the WLAN and the CDMA cellular networks. The WLAN operates under the IEEE 802.11e medium access control (MAC) protocol, which supports QoS for multimedia traffic. A novel concept of effective bandwidth is used in the CDMA network to derive the unified radio resource usage, taking into account both physical layer linear minimum mean square error (LMMSE) receivers and characteristics of the packet traffic. Numerical examples illustrate that the network revenue earned in the proposed joint admission control scheme is significantly larger than that when the individual networks are optimized independently with no vertical handoff between them. The revenue gain is also significant over the scheme in which vertical handoff is supported, but admission control is not done jointly. Furthermore, we show that the optimal joint admission control policy is a randomized policy, i.e., sessions are admitted to the system with probabilities in some states  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号