首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonporous homogeneous dense membranes were prepared from the blends of sodium alginate (Na–Alg) with guar gum‐grafted polyacrylamide (GG‐g‐PAAm) in the ratios of 3 : 1 and 1 : 1 and these were tested for the pervaporation separation of water–acetic acid mixtures at 30°C. Blend compatibility was studied in solution by measuring the viscosity and the speed of sound. Membranes were crosslinked by glutaraldehyde. The GG‐g‐PAAm polymer and the crosslinked blend membranes were characterized by Fourier transform infrared spectra. High separation selectivity was exhibited by the pure Na–Alg membrane for water–acetic acid (HAc) mixtures containing 20 mass % of water. The permeation flux increased with increasing mass percent of water in the feed as well as with an increase in the amount of GG‐g‐PAAm in the blend, but separation selectivity decreased. Sorption selectivity was higher for the Na–Alg membrane than for the blend membranes, but it decreased with increasing mass percent of GG‐g‐PAAm in the blends. Diffusion selectivity values vary systematically with the blend composition, but not with the amount of water in the feed. Diffusion coefficients of the water–HAc mixtures were calculated from Fick's equation using sorption data and compared with those calculated from flux values obtained in pervaporation experiments. The Arrhenius activation parameters were calculated for the 20 mass % of water in the feed using flux and diffusion data obtained at 30, 40, and 50°C. The diffusion and pervaporation results are explained in terms of solution–diffusion concepts. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 259–272, 2002  相似文献   

2.
The blend membranes of sodium alginate (Na‐Alg) and poly(acrylamide)‐grafted guar gum (PAAm‐g‐GG) in the ratios of 3:1 and 1:1 were prepared and studied for the pervaporation separation of water–isopropyl alcohol mixtures over the entire range of mixture composition at 30°C. Membranes prepared from neat Na‐Alg (M‐1) and the 1:1 blend of Na‐Alg and PAAm‐g‐GG (M‐3) showed the highest separation selectivity for 10 mass % water in the feed mixture, whereas membranes prepared with the 3:1 blend ratio of Na‐Alg to PAAm‐g‐GG showed the highest separation selectivity of 20 mass % water in the feed. Selectivity decreased with increasing amount of water in the feed for all the membranes, but these values show an increase with increasing amount of grafted copolymer in the blend mixture. Flux increased with increasing amount of water in the mixture, but the flux values did not change markedly with the PAAm‐g‐GG content in the blend membrane at the lower mass % water. At higher mass % of water, the flux values of the blends increase systematically with increasing amount of PAAm‐g‐GG in the blend polymer. For the 10 mass %‐containing binary mixtures, the pervaporation separation experiments were performed at 30, 40, and 50°C, and the resulting data were used to calculate the Arrhenius activation parameters. These data indicated activated pore‐type diffusion of the permeants in the membranes. Dynamic sorption studies were also performed on up to 40 mass % water–isopropyl alcohol mixtures at 30°C. These results, when analyzed by the empirical equation, indicated Fickian transport in all the cases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2014–2024, 2002  相似文献   

3.
Poly(vinyl alcohol) as well as its grafted copolymer membranes with polyacrylonitrile (PAN‐g‐PVA) were prepared and used to separate water and dimethyl formamide mixtures by the pervaporation technique. The three following membranes were prepared: (1) pure PVA; (2) 46% grafted PAN‐g‐PVA; and (3) 93% grafted PAN‐g‐PVA. Pervaporation separation experiments were carried out at 25°C for the feed mixture containing 10 to 90% water. By use of the transport data, permeation flux, separation selectivity, swelling index, and diffusion coefficients have been calculated. By increasing the grafting of the membrane, flux decreased, whereas separation selectivity increased slightly over that of pure PVA membrane. Arrhenius activation parameters for transport processes were calculated for 10 mass % water containing feed mixture by using flux and diffusion data obtained at 25, 35, and 45°C. Transport parameters were discussed in terms of sorption‐diffusion principles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 4091–4097, 2004  相似文献   

4.
Graft copolymers of poly(vinyl alcohol) (PVA) with polyacrylamide were prepared and membranes were fabricated at 48 and 93% grafting of acrylamide onto PVA. These membranes were used in the pervaporation separation of water/acetic acid mixtures at 25, 35, and 45°C. The permeation flux, separation selectivity, diffusion coefficient, and permeate concentration were determined. The highest separation selectivity of 23 for neat PVA at 25°C and the lowest value of 2.2 for 93% acrylamide‐grafted PVA membranes were observed. A permeation flux of 1.94 kg m?2 h?1 was found for the 93% grafted membrane at 90 mass % of water in the feed mixture. The diffusion coefficients in a water/acetic acid mixture had an effect on the membrane permselectivity. The Arrhenius equation was used to calculate the activation parameters for permeation as well as for the diffusion of water and of acetic acid. The activation energy values for the permeation flux varied from 97 to 28 kJ/mol. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 244–258, 2002  相似文献   

5.
Grafted copolymeric membranes of poly(vinyl alcohol) with acrylamide (PVA‐g‐AAm) were developed and used in the pervaporation separation of water–dimethylformamide mixtures by varying the amount of water in the feed from 0 to 100%. From these data, the permeation flux, pervaporation separation index, diffusion coefficient, swelling index, and separation selectivity were calculated at 25, 35, and 45°C. The Arrhenius activation parameters for permeation flux ranged between 22 and 63 kJ/mol, while the activation energy for diffusion ranged between 23 and 67 kJ/mol. Separation selectivity was between 15 and 22. The highest permeation flux of 0.459 kg m?2 h?1 was obtained for the 93% grafted membrane at 90% of water in the feed mixture. The results are discussed using the principles of the solution–diffusion model. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 273–282, 2002  相似文献   

6.
Hybrid membranes were prepared using poly(vinyl alcohol) (PVA) and tetraethylorthosilicate (TEOS) via hydrolysis and cocondensation reaction for the pervaporation separation of water‐isopropanol mixtures. The resulting membranes were characterized by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, and differential scanning calorimetry. The glass transition temperature of these membranes varied from 100 to 120°C with increasing TEOS content. Effects of crosslinking density and feed compositions on the pervaporation performances of the membranes were studied. The membrane containing 1.5:1 mass ratio of TEOS to PVA gave the highest separation selectivity of 900 at 30°C for 10 mass % of water in the feed mixture. It was found that the separation selectivity and permeation flux data are strongly dependent on the water composition of the feed and operating temperature. However, the membrane with the highest crosslinking density showed unusual pervaporation properties. The overall activation energy values were calculated using the Arrhenius‐type equation. The activation energy values for the permeation and diffusion varied from 49.18 to 64.96 and 55.13 to 67.31 kJ/mol, respectively. Pervaporation data have also been explained on the basis of thermodynamic quantities. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1304–1315, 2004  相似文献   

7.
Acrylamide (AAm) solid state polymerization was induced using argon plasma to improve the pervaporation performance of poly(tetrafluoroethylene) (PTFE) membranes (PTFE‐g‐PAAm) in aqueous alcohol mixtures. The surface morphology, chemical composition, and hydrophilicity changes in the PTFE and PTFE‐g‐PAAm membranes were investigated using ATR‐FTIR, SEM, AFM, X‐ray photoelectron spectroscopy, and water contact angle measurements. The surface hydrophilicity rapidly increased with increasing Ar exposure time, but decreased after longer Ar exposure time because of the degradation in the PTFE‐g‐PAAm membrane grafted layer. Compared with the hydrophilicity of the pristine PTFE membrane (water contact angle = 120°), the argon plasma induced acrylamide (AAm) solid‐state polymerization onto the PTFE surface (water contact angle = 43.3°) and effectively improved the hydrophilicity of the PTFE membrane. This value increases slowly with increasing aging time and then reaches a plateau value of about 50° after 10 days of storage under air. The pervaporation separation performances of the PTFE‐g‐PAAm membranes were higher than that of the pristine PTFE membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:909–919, 2006  相似文献   

8.
以聚乙烯醇(PVA)与聚乙二醇(PEG)共混,并与正硅酸乙酯(TEOS)进行交联反应制备杂化膜。FTIR证实杂化溶胶液发生交联反应形成共价键Si—O—C,WXRD观察表明加入TEOS改变了膜结晶度,加入PEG提高了PVA膜对乙醇/水溶液的渗透通量,但分离因子下降,随着TEOS的加入,膜的分离因子提高。在TEOS质量分数为10%时,杂化膜的分离因子达到最大。提高退火温度可以提高膜的分离因子,但通量下降。在100℃下退火12 h的杂化膜对乙醇质量分数为85%的乙醇/水溶液的分离性能最佳。  相似文献   

9.
Poly(vinyl alcohol) (PVA) blended with poly(ethylene glycol) (PEG) was crosslinked with tetraethoxysilane (TEOS) to prepare organic–inorganic PVA/PEG/TEOS hybrid membranes. The membranes were then used for the dehydration of ethanol by pervaporation (PV). The physicochemical structure of the hybrid membranes was studied with Fourier transform infrared spectra (FT‐IR), wide‐angle X‐ray diffraction WXRD, and scanning electron microscopy (SEM). PVA and PEG were crosslinked with TEOS, and the crosslinking density increased with increases in the TEOS content, annealing temperature, and time. The water permselectivity of the hybrid membranes increased with increasing annealing temperature or time; however, the permeation fluxes decreased at the same time. SEM pictures showed that phase separation took place in the hybrid membranes when the TEOS content was greater than 15 wt %. The water permselectivity increased with the addition of TEOS and reached the maximum at 10 wt % TEOS. The water permselectivity decreased, whereas the permeation flux increased, with an increase in the feed water content or feed temperature. The hybrid membrane that was annealed at 130°C for 12 h exhibited high permselectivity with a separation factor of 300 and a permeation flux of 0.046 kg m?2 h?1 in PV of 15 wt % water in ethanol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
《分离科学与技术》2012,47(13):2913-2931
Abstract

In this study, acrylonitrile (AN) and hydroxyl ethyl methacrylate (HEMA) were grafted onto poly(vinyl alcohol) (PVA) using cerium (IV) ammonium nitrate as initiator at 30°C. The graft copolymer was characterized using the Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The grafted PVA membranes (PVA‐g‐AN/HEMA) were prepared by a casting method, and used in the separation of acetic acid‐water mixtures by pervaporation. The effects of the membrane thickness, operating temperature, and feed composition on the permeation rate and separation factor for acetic acid‐water mixtures were studied. Depending on the membrane thickness, the temperature and feed composition PVA‐g‐AN/HEMA membranes gave separation factors 2.26–14.60 and permeation rates of 0.18–2.07 kg/m2h. It was also determined that grafted membranes gave lower permeation rates and greater separation factors than PVA membranes. Diffusion coefficients of acetic acid‐water mixtures were calculated from permeation rate values. The Arrhenius activation parameters were calculated for the 20 wt.% acetic acid content in the feed using the permeation rate and the diffusion data obtained at between 25–50°C.  相似文献   

11.
新型聚乙烯醇/硅系杂化膜的制备及渗透性能   总被引:1,自引:0,他引:1       下载免费PDF全文
张秋根  陈瑜  陈建华  刘庆林 《化工学报》2007,58(5):1238-1243
采用溶胶-凝胶法制备了聚乙烯醇(PVA)/γ-氨丙基三乙氧基硅氧烷(APTEOS)有机/无机杂化膜。用FTIR和XRD对杂化膜进行了表征。测定了膜在乙醇/水溶液中的溶胀行为。考察了杂化膜对85%(质量)的乙醇/水溶液的渗透蒸发分离性能。加入APTEOS降低了PVA的结晶度,有效控制了膜的溶胀,呈现出优良的分离性能。随着APTEOS含量的增加,杂化膜的选择性急剧增加,在5.0%(质量)时达到最大值;同时膜的渗透通量迅速增加。解决了PVA膜trade-off效应。  相似文献   

12.
For the preparation of a water‐selective membrane for the pervaporation separation of an azeotropic solution, a series of grafted copolymers were synthesized by the reaction of poly(vinyl alcohol) (PVA) with poly(sodium salt styrene sulfonic acid‐co‐maleic acid) (PSStSA‐co‐MA). The esterification was performed between the hydroxyl groups of PVA and the carboxylic groups of the copolymer with a heat treatment. PSStSA‐co‐MA was prepared with sodium salt styrene sulfonic acid and maleic anhydride copolymerization in dimethyl sulfoxide with azobisisobutyronitrile as an initiator. The reaction mechanism and resultant structure were confirmed with IR spectra. The effect of the heat‐treatment time on the gel content was investigated. The permeation flux decreased and the separation factor increased as the crosslinking agent content rose. A membrane containing 15 wt % PSStSA‐co‐MA was used for water–ethanol azeotropic solution pervaporation at 30°C, and a flux of 0.43 kg/m2 h and a separation factor of 190 were obtained. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2854–2859, 2002  相似文献   

13.
This study reveals the effect of hydrophilic bentonite nanoclay on the pervaporation separation of azeotropic composition of water and 1,4‐dioxane. The permselectivity of the membrane increased with filler concentration and was selective toward water at minimum filler loading. The intrinsic properties such as membrane permeance and selectivity increased with the concentration of hydrophilic bentonite nanoclay and crosslinked poly(vinyl alcohol) (PVA) with 2 wt% nanoclay membranes showed intrinsic selectivity 443 (532% increment than that of pristine membranes) with water permeance 4,675 gas permeation unit which is significantly higher compared to earlier literature. X‐ray diffraction and Transmission electron microscopy showed the well exfoliated and distributed nanoclay structure in the crosslinked PVA matrix. Interaction of PVA with nanoclay and the hydrophilic character of the membranes were characterized by Fourier transform infrared spectra and contact angle analysis, respectively. Interestingly, in this work the membranes exhibited simultaneous increment in both permeation flux and selectivity with filler loading, rather than the usual inverse trend of flux and selectivity. A predictive model of pervaporation was used to explain the pervaporation behavior and it showed good agreement with experimental results for overall pervaporation performance, preferential sorption of water, and hydrophilic‐hydrophobic nature of the membranes. POLYM. ENG. SCI., 58:849–858, 2018. © 2017 Society of Plastics Engineers  相似文献   

14.
Poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) is known to show preferential permeation of ethanol in the pervaporation of ethanol–water mixture. Although this polymer presents good characteristics for the separation of organic–water solutions, operation conditions and membrane characteristics, such as thickness, affect its pervaporation performance. The effect of temperature and feed concentration on pervaporation was studied. During pervaporation of 10 wt % ethanol–water solution, the separation factor (αH2OEtOH) remains almost constant, whereas the permeation flux (F) increases exponentially with operation temperature. On the other hand, the separation factor decreases, whereas the permeation flux increases with ethanol content in the feed mixture. The membrane thickness also affects the performance of PTMSP polymer films: selectivity increases sharply with membrane thickness up to 50 μm, whereas it remains constant for thicker membranes. The permeation flux decreases with membrane thickness in the whole range studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94:1395–1403, 2004  相似文献   

15.
To improve the pervaporation performance of PDMS membrane, alkyl groups with different chain length were grafted into PDMS matrix. The prepared membranes were characterized by ATR‐IR, DSC, TGA, PALS, and tensile testing. The effects of alkyl grafting on pervaporation performance of PDMS membrane were investigated in separation of ethyl acetate/water mixture. Experimental results show that the separation factor of PDMS membrane is largely improved by alkyl grafting because of the enhanced preferential sorption of ethyl acetate, and this improvement depends on alkyl grafting ratio and alkyl chain length. The total flux of PDMS membrane reduces after alkyl grafting owing to the decreased free volume. When grafting ratio is above 6.9%, membrane grafted with shorter alkyl groups is preferred for pervaporation. The best pervaporation performance is achieved by 9% octyl grafted PDMS membranes with a separation factor of 592 and a total flux of 188 gm?2 h?1 in separation of 1% ethyl acetate/water mixture at 40 °C. Moreover, this octyl grafted PDMS membrane also exhibits excellent separation performance in removal of butyl acetate, methyl‐tert‐butyl ether, and n‐butanol from water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43700.  相似文献   

16.
Polyacrylamide‐grafted‐sodium alginate copolymers were prepared by persulfate‐induced radical polymerization by using polymer‐to‐monomer ratios of 2 : 1 and 1 : 1. Polymers were characterized by Fourier transform infrared spectroscopy, differential thermal analysis, and viscosity. Membranes were prepared from the polymers, crosslinked with glutaraldehyde, and used in the pervaporation separation of water + isopropanol mixtures at 30°C. Equilibrium swelling experiments were performed for mixtures containing 10 to 80 mass % of water in the feed. Both the grafted copolymer membranes were ruptured while separating 10 mass % of water in the feed mixture. However, beyond 20 mass % of water in the feed mixture, flux increased with increasing grafting ratio, while selectivity decreased. Pervaporation separation experiments were carried out at 30, 40, and 50°C for 20 mass % of water in the feed mixture. By increasing the temperature, flux increased, whereas selectivity decreased. Arrhenius activation parameters for pervaporation and diffusion decreased with increasing grafting ratio of the membranes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2030–2037, 2004  相似文献   

17.
BACKGROUND: As part of an ongoing research and development programme of our laboratory on functional modification of seaweed polysaccharides for preparing hydrogels with improved properties, we report herein the preparation of a robust hydrogel system based on grafting of agar and sodium alginate blend (Agar/Na‐Alg) with acrylamide (AAm) to obtain the copolymer Agar/Na‐Alg‐graft‐PAAm. RESULTS: A robust hydrogel system with superior absorbency and pH resistance has been developed based on a PAAm‐grafted seaweed polysaccharide blend of Agar/Na‐Alg. The blend (Agar/Na‐Alg) and grafted product (Agar/Na‐Alg‐graft‐PAAm) were evaluated using Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetric analysis, swelling capacity, rheology and scanning electron microscopy. The swelling capacity of the grafted copolymer exhibited an enhancement over that of the blend from 14 to 24 g g?1 in acidic medium. The blend and grafted copolymer produced hydrogels with lower gelling points of 31 and 29 °C and gel strengths were 170 and 120 g cm?2, respectively. CONCLUSION: This study constitutes an example of value addition of seaweed polysaccharides targeting new applications. The copolymer hydrogel may be useful in health, personal care and agricultural applications. Copyright © 2007 Society of Chemical Industry  相似文献   

18.
In this study, itaconic acid (IA) was grafted onto poly(vinyl alcohol) (PVA) with cerium(IV) ammonium nitrate as an initiator at 45°C. The grafted PVA was characterized with Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. IA‐grafted PVA membranes were prepared with a casting method, and the permeation and separation characteristics of acetic acid/water mixtures were investigated with pervaporation (PV), evapomeation (EV) and temperature‐difference evapomeation (TDEV) methods. The effects of the feed composition, operating temperature, and temperature of the membrane surroundings on the permeation rate and separation factor for the acetic acid/water mixtures were studied. The permeation rates in EV were lower than those in PV, whereas the separation factors were higher. With the TDEV method, the permeation rates decreased and the separation factors increased as the temperature of the membrane surroundings decreased. The prepared membranes were also tested in PV, EV, and TDEV to separate the various compositions of the acetic acid/water mixtures (20–90 wt % acetic acid) at 40°C. The highest separation factor, 686, was obtained in TDEV with a 90 wt % acetic acid concentration in the feed. The activation energies of permeation in PV and EV were calculated to be 8.5 and 10.2 kcal/mol, respectively, for a 20 wt % acetic acid solution. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2322–2333, 2004  相似文献   

19.
Poly(vinyl alcohol) membranes containing cyclodextrin (CD–PVA membrane) were prepared and characteristics of permeation and separation for propanol (PrOH) isomers through the CD–PVA membranes were investigated by pervaporation and evapomeation. Evapomeation was more effective for the separation of PrOH isomers through the CD–PVA membrane than was pervaporation. The CD–PVA membrane more preferentially permeated n-PrOH than i-PrOH from their mixtures. In particular, the mixture of 10 wt % n-PrOH concentration was concentrated to about 45 wt % through the CD–PVA membrane. Both permeability and selectivity for n-PrOH were improved with an increase of CD content in the membrane. The results were supported by the fact that the affinity of CD for n-PrOH was stronger than that for i-PrOH. The permeation mechanism of PrOH isomers through the CD–PVA membrane is discussed based on the solution–diffusion theory. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
A comparative study on the pervaporation separation has been attempted for water + 1,4‐dioxane and water + tetrahydrofuran mixtures using sodium alginate and blend membranes of sodium alginate with 5, 10, and 20 mass % of poly(vinyl alcohol). Pure sodium alginate membrane has a selectivity of 111 to water at 0.35‐mol fraction of water in the feed mixture containing 1,4‐dioxane while for water + tetrahydrofuran mixture, the membrane selectivity to water was 291 at 0.31‐mol fraction of water in the feed mixture. Pervaporation results have been discussed using the solution–diffusion principles. Arrhenius activation parameters for diffusion and permeation have been computed from the temperature‐dependent pervaporation results. Furthermore, experimental results have been analyzed using the complete mixing and plug flow models to compute membrane area as well as design parameters that are useful in scale‐up operations. The plug flow model is more appropriate than the complete mixing model to analyze the pervaporation results. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1827–1840, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号