首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The melt rheological behavior of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends has been examined with reference to the effect of blend ratio, shear stress, and temperature. The HDPE/EVA blends exhibit pseudoplastic behavior, and the observed rheological behavior of the blends was correlated with the extrudate morphology. The experimental values of the viscosity were compared with the theoretical models. The effect of maleic‐ and phenolic‐modified PE compatibilizers on the viscosity of H70 blend was analyzed and found that compatibilization did not significantly increase the viscosity. The effect of dynamic vulcanization and temperature on the viscosity was also analyzed. The activation energy of the system decreased with increase in EVA content in the system. The phase continuity and phase inversion points of the blends were theoretically predicted and compared with the experimental values. The melt flow index (MFI) values of the blends were also determined and found that the MFI values decreased with increase in EVA content in the system. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

2.
The effects of the blend composition and compatibilization on the morphology of linear low‐density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends were studied. The blends showed dispersed/matrix and cocontinuous phase morphologies that depended on the composition. The blends had a cocontinuous morphology at an EVA concentration of 40–60%. The addition of the compatibilizer first decreased the domain size of the dispersed phase, which then leveled off. Two types of compatibilizers were added to the polymer/polymer interface: linear low‐density polyethylene‐g‐maleic anhydride and LLDPE‐g phenolic resin. Noolandi's theory was in agreement with the experimental data. The conformation of the compatibilizer at the blend interface could be predicted by the calculation of the area occupied by the compatibilizer molecule at the interface. The effects of the blend ratio and compatibilization on the dynamic mechanical properties of the blends were analyzed from ?60°C to +35°C. The experiments were performed over a series of frequencies. The area under the curve of the loss modulus versus the temperature was higher than the values obtained by group contribution analysis. The loss tangent curve showed a peak corresponding to the glass transition of EVA, indicating the incompatibility of the blend system. The damping characteristics of the blends increased with increasing EVA content because of the decrease in the crystalline volume of the system. Attempts were made to correlate the observed viscoelastic properties of the blends with the morphology. Various composite models were used to model the dynamic mechanical data. Compatibilization increased the storage modulus of the system because of the fine dispersion of EVA domains in the LLDPE matrix, which provided increased interfacial interaction. Better compatibilization was effected at a 0.5–1% loading of the compatibilizer. This was in full agreement with the dynamic mechanical spectroscopy data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4526–4538, 2006  相似文献   

3.
The compatibilization efficiency of styrene–ethylene/butylene–styrene (SEBS) triblock copolymer in immiscible polypropylene (PP)/polystyrene (PS) 20/80 blends was evaluated in terms of not only morphology, but also rheology and fractionated crystallization behavior. Besides varying SEBS loading, four different mixing protocols were used to vary SEBS dispersion state. PP2/PS/SEBS blend, prepared by two‐step method mixing PS and SEBS primarily, presents the largest droplet size (1.278 μm) at the critical compatibilizer concentration (CCC = 1 wt %). However, the CCC of blends prepared by the other protocols is 2 wt %. And at the CCC, PP/PS2/SEBS (two step method mixing PP and SEBS primarily) shows the smallest droplet size (0.908 μm), followed by PP/PS/SEBS (one step method). The rheology and crystallization behavior of PP/PS blends could also be utilized to assess the compatibilization efficiency of SEBS, but only in the case of mixing under the same protocol and the content of SEBS below a CCC. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46244.  相似文献   

4.
Investigations have been made on the melt rheological behaviors of compatibilized blends composed of polystyrene, low density polyethylene and hydrogenated (styrene‐butadiene‐styrene) triblock copolymer used as a compatibilizer. The experiments were carried out on a capillary rheometer. The effects of shear stress, temperature and blending ratio on the activation energy for viscous flow and melt viscosity of the blends are described. The study shows that the viscosity of the blends exhibits a maximum or minimum value at a certain blending ratio. The activation energy for viscous flow decreases with increasing LDPE content. Furthermore, the concept of equal‐viscosity temperature is presented and its role in the processing of the blend is discussed. In addition, the morphology of the extrudate sample of the blends was observed by scanning electron microscopy and the correlation between the morphology and the rheological properties is explored. © 1999 Society of Chemical Industry  相似文献   

5.
The objective of this study is to investigate the effect of low density polyethylene (LDPE) content in linear low density polyethylene (LLDPE) on the crystallinity and strain hardening of LDPE / LLDPE blends. Three different linear low density polyethylenes (LL‐1, LL‐2 and LL‐3) and low density polyethylenes (LD‐1, LD‐2 and LD‐3) were investigated. Eight blends of LL‐1 with 10, 20, 30 and 70 wt % of LD‐1 and LD‐3, respectively, were prepared using a single screw extruder. The elongational behavior of the blends and their constituents were measured at 150°C using an RME rheometer. For the blends of LL‐1 with LD‐1, the low shear rate viscosity indicated a synergistic effect over the whole range of concentrations, whereas for the blends of LL‐1 with LD‐3, a different behavior was observed. For the elongational viscosity behavior, no significant differences were observed for the strain hardening of the 10–30% LDPE blends. Thermal analysis indicated that at concentrations up to 20%, LDPE does not significantly affect the melting and crystallization temperatures of LLDPE blends. In conclusion, the crystallinity and rheological results indicate that 10–20% LDPE is sufficient to provide improved strain hardening in LLDPE. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3070–3077, 2003  相似文献   

6.
The compatibilizing efficiency of three different compatibilizers on the thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends properties was investigated after compatibilizer's incorporation via melt‐mixing. The compatibilizers studied were as follows: poly‐ε‐caprolactone (PCL) of different molecular weight (Mw), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly (methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly (methyl methacrylate) (PB‐b‐PMMA). In our study, the effect of 5 wt % added compatibilizers on TPU/SAN blends morphology was examined. The transmission electron microscopy (TEM) was used to study the morphology at different length scales and to determine the compatibilizer's location. Investigations showed the different improvement of properties, because of the different incorporation of compatibilizers in the polymer blend. The morphology influence on the rheological behavior of compatibilized blends was investigated with a stress‐controlled rheometer (Rheometric Dynamic Stress Rheometer, SR‐500). Different compatibilization activity was found for different system. It was also found that compatibilization activity of added compatibilizer strongly depends on the comaptibilizer's Mw. Blends compatibilized with PCL showed superior properties as compared with the other examined blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2303–2316, 2006  相似文献   

7.
A reactive compatibilizer, mercapto‐functionalized EVA (EVASH), in combination with styrene‐butadiene block copolymer (SBS), was used to compatibilize the blends of polystyrene (PS) and ethylene–vinyl acetate copolymer (EVA). The reactive compatibilization was confirmed by the presence of insoluble material and from dynamic‐mechanical analysis. In addition to a more uniform morphology with small phase size, the compatibilization also provided excellent stabilization of the morphology, with an almost complete suppression of coarsening during annealing. As a consequence, a substantial increase on the elongation at break without significant influence on ultimate tensile strength was achieved for compatibilized blends with different compositions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 14–22, 2006  相似文献   

8.
Melt rheology and morphology of nylon‐6/ethylene propylene rubber (EPR) blends were studied as a function of composition, temperature, and compatibilizer loading. Uncompatibilized blends with higher nylon‐6 content (N90 and N95) and rubber content (N5 and N10) had viscosities approximately intermediate between those of the component polymers. A very clear negative deviation was observed in the viscosity–composition curve over the entire shear rate range studied for blends having composition N30, N50, and N70. This was associated with the interlayer slip resulting from the high‐level incompatibility between the component polymers. The lack of compatibility was confirmed by fracture surface morphology, given that the dispersed domains showed no sign of adhesion to the matrix. The phase morphology studies indicated that EPR was dispersed as spherical inclusions in the nylon matrix up to 30 wt % of its concentration. A cocontinuous morphology was observed between 30 and 50 wt % nylon and a phase inversion beyond 70 wt % nylon. Various models based on viscosity ratios were used to predict the region of phase inversion. Experiments were also carried out on in situ compatibilization using maleic anhydride–modified EPR (EPR‐g‐MA). In this reactive compatibilization strategy, the maleic anhydride groups of modified EPR reacted with the amino end groups of nylon. This reaction produced a graft copolymer at the blend interface, which in fact acted as the compatibilizer. The viscosity of the blend was found to increase when a few percent of modified EPR was added; at higher concentrations the viscosity leveled off, indicating a high level of interaction at the interface. Morphological investigations indicated that the size of the dispersed phase initially decreased when a few percent of the graft copolymer was added followed by a clear leveling off at higher concentration. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 252–264, 2004  相似文献   

9.
More than 25 PP/PS/SEP blends, where PP is isotactic polypropylene, PS is atactic polystyrene, and SEP is poly(styrene‐block‐ethylene‐co‐propylene), were prepared. The main objective of this study was to investigate the influence of PP/PS viscosity ratio, λTM, on the blends' morphology. It was shown that λTM strongly influenced not only the overall morphology of the blends, but also the morphology of SEP, which exhibited as many as five different types of structure when blended with PP and/or PS. SEP was found an efficient compatibilizer of PP/PS blends as it decreased the average particle size in all studied systems. An interesting “by‐product” of this work was the discovery of a brand‐new type of polymer morphology, which was called morel structure. The characteristic feature of the morel structure was PS matrix compartmentalized by SEP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2236–2249, 2006  相似文献   

10.
Correlations among the degree of crosslinking of ethylene vinyl acetate copolymer (EVA), the grafting yield of maleic anhydride (MAH) onto EVA, and the mechanical properties of the blends of poly(butylene terephtalate) (PBT) with EVA‐g‐MAH were investigated. The EVA was functionalized by melt grafting reaction in the presence of MAH and dicumyl peroxide (DCP) using a plasticorder. The grafting yield of MAH was increased by increasing the concentration of MAH and DCP. The flexural strength of PBT–EVA‐g‐MAH blends depends on both the grafting yield of MAH and the degree of crosslinking of EVA, while the crosslinked parts of EVA‐g‐MAH hindered rather than improved the tensile strength regardless of the increase of the grafting yield of MAH. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1305–1310, 2003  相似文献   

11.
The effects of two compatibilizing agents, polystyrene–poly(ethylene butylene)–polystyrene copolymer (SEBS) and SEBS‐grafted maleic anhydride (SEBS‐g‐MAH), on the morphology of binary and ternary blends of polyethylene, polypropylene, and polyamide 6,6 were investigated with scanning electron microscopy and melt rheology measurements. The addition of the compatibilizers led to finer dispersions of the particles of the minor component and a decrease in their size; this induced a significant change in the blend morphology. The rheological measurements confirmed the increased interaction between the blend components, especially with SEBS‐g‐MAH as the compatibilizer. New covalent bonds could be expected to form through an amine–anhydride reaction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1976–1985, 2004  相似文献   

12.
Electron beam irradiation has been used to improve the processability of polypropylene/ethylene-propylenediene monomer (PP/EPDM) blends (controlled rheology) in combination with fixation of morphology by inducing crosslinks in the dispersed EPDM phase. An optimum morphology for impact toughening has been obtained via extrusion-blending high molecular weight PP with EPDM. Upon irradiation before subsequent processing (injection moulding) this morphology is fixated, whereas the viscosity of the blend decreases as a result of chain scission of the PP matrix. Impact strength and elongation at break of these irradiated blends are better than those of blends of low molecular weight PP with EPDM, which possess comparable overall viscosity.  相似文献   

13.
A series of ethylene vinyl acetate/ethylene–propylene diene elastomer (EVA/EPDM) blends with four types of EVAs with various vinyl acetate (VA) content, are prepared without and with crosslinker, trimethylol propane triacrylate (TMPTA). These are irradiated by electron beam (EB). As the VA content increases, the gel content, i.e., degree of crosslinking of EVA/EPDM blends, is increased. With increase in VA content, the modulus and tensile strength are decreased but elongation at break is increased due to increase in amorphousness. On EB irradiation, modulus and tensile strengths are increased but at the cost of elongation at break. Crystallinities of all blends are decreased with increase in VA and EB crosslinking. The thermal stability of EVA/EPDM blend is decreased with increase in VA content but increased after EB irradiation. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that with increase in VA content the miscibility of two polymers keeps on increasing, which even become more after EB irradiation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43468.  相似文献   

14.
The dynamic mechanical properties of blends of natural rubber (NR) and the ethylene–vinyl acetate copolymer (EVA), a thermoplastic elastomer, were investigated in terms of the storage modulus and loss tangent for different compositions, using dynamic mechanical thermal analysis (DMTA) covering a wide temperature range. Mean‐field theories developed by Kerner were applied to these binary blends of different compositions. Theoretical calculations were compared with the experimental small strain dynamic mechanical properties of the blends and their morphological characterizations. Predictions based on the discrete particle model (which considers one of the components as a matrix and the other dispersed as well‐defined spherical inclusions embedded in the matrix) agreed well with the experimental data in the case of 30/70 NR/EVA but not in the case of 70/30 NR/EVA blends. A 50/50 blend, where a cocontinuous morphology was revealed by SEM studies, was found to be approximately modeled by the polyaggregate model (where no matrix phase but a cocontinuous structure of the two is postulated). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 165–174, 1999  相似文献   

15.
The effectiveness of P(E‐co‐MA‐co‐GMA) as a compatibilizer for recycled PET/PP and recycled PET/PP‐EP (polypropylene (ethylene‐propylene) heterophase copolymer) blends was investigated by means of morphological (scanning electron microscopy), rheological (small amplitude oscillatory shear), mechanical (tensile, flexural and impact tests), and thermal (differential scanning calorimetry) properties. Compatibilizer concentration ranged from 1 to 5 wt % with respect to the whole blend. All blends were obtained in a 90/10 composition using a twin screw extruder. Compatibilization effects for PETr/PP‐EP were more pronounced due to ethylene segments present in both PP‐EP and P(E‐co‐EA‐co‐GMA). PETr/PP‐EP has shown greater dispersed phase size reduction, a more solid‐like complex viscosity behavior and larger storage modulus at low frequencies in relation to PETr/PP blend. For both investigated blends, mechanical properties indicated an improvement in both elongation at break and impact strength with increasing compatibilizer content. PETr/PP‐EP blends showed improved performance for the same level of compatibilizer content. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41892.  相似文献   

16.
A novel thermoplastic vulcanizate (TPV) based on the blends of ethylene vinyl acetate/thermoplastic polyurethane (EVA/TPU) at various blend ratios has been developed via dynamic vulcanization at 180 °C using di‐(2‐tert‐butyl peroxy isopropyl) benzene (DTBPIB) peroxide as the cross‐linking agent. Modification of the EVA/TPU blends via dynamic crosslinking significantly improves the tensile strength and modulus of the system and the improvement is more significant for EVA/TPU 50/50 and 60/40 blends. AFM study shows that crosslinked EVA particles are dispersed in the continuous TPU matrix and the dispersed EVA domain sizes are relatively smaller in EVA/TPU 50/50 and 60/40 blends leading to good mechanical properties. FTIR spectroscopy has been used to characterize the specific chemical changes occurring due to dynamic vulcanization. This TPV has excellent retention of physico‐mechanical properties even after reprocessing twice and the blends also have very good thermal resistance as indicated by aging study. The samples were found to exhibit remarkable improvement in oil resistance property as compared to their uncrosslinked counterpart. The creep behavior of the blends significantly improves after dynamic crosslinking and blends with higher TPU content show better creep resistance. Volume resistivity of all the peroxide vulcanized blends is in the range of 1013 ohm cm, which is suitable for cable sheathing application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43706.  相似文献   

17.
This is the first study to showcase the use of maleic anhydride-grafted polyethylene (MAPE) to compatibilize polyethylene (PE)-rich blends, where polypropylene (PP) represents the minor phase. By first mixing PP with MAPE, and then adding PE, MAPE was assumed to be localized at the PE/PP interface. Microscopy analysis confirmed that MAPE led to a remarkably fine PE/PP/MAPE morphology, with PP being uniformly dispersed into PE and having an average diameter 267% smaller than that in the PE/PP blend. According to mechanical and rheological tests, this translated into a 14%, 20%, and 14% enhancement of tensile strength, tensile modulus, and tensile toughness, respectively, as well as a 10% and 20% drop in PE/PP viscosity mismatch and interfacial tension, respectively. Finally, PE/PP/MAPE tensile toughness and elongation at break were greater than those of virgin PP, while PE/PP/MAPE strength and stiffness were similar to the ones of neat PP. Therefore, this study provides industries with the possibility to utilize products rich in PE instead of those made of more expensive PP, while still keeping the level of performance high; hence, creating a paradigm shift in the development of advanced lightweight polyolefin materials with tuned functionalities.  相似文献   

18.
Ethylene‐vinyl acetate (EVA) copolymer functionalized with mercapto groups (EVALSH) has been used as compatibilizing agent in nitrile rubber/EVA blends. The tensile strength and elongation at break of the system were measured as a function of the EVALSH content and blend composition. The compatibilization affects the mechanical properties of these blends. The highest improvement of the tensile strength has been achieved in the composition range corresponding to the co‐continuous phase morphology. The co‐continuity of these blends has been studied by both dissolution studies and scanning electron microscopy. The addition of EVALSH as an interfacial modifier did not change the region of co‐continuity but influences the percolation threshold for both dispersed nitrile rubber phase and dispersed EVA phase. From optical microscopy and differential scanning calorimetry analysis, it is possible to assume that the functionalized EVALSH copolymer affects the crystallization of the EVA phase. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 193–202, 2001  相似文献   

19.
Reactive processing of blends of poly(butylene terephthalate) (PBT) with the ethene–(methyl acrylate)–(glycidyl methacrylate) terpolymer (E–MA–GMA) is known to present a very complex reactivity since two competitive reactions take place spontaneously during melt blending, that is, blend compatibilization and rubber‐phase crosslinking. In this article, the effects of several processing parameters, such as the shear rate, the processing temperature, and the matrix viscosity, on the reactive processing of those blends were investigated in terms of the blend morphology and of the amount of copolymer formed at the blend interface. It was shown that the morphology development could be divided in two successive regimes: In the early stages of the mixing process, the particle size is essentially determined by the physical dispersion process, that is, breakup and coalescence, while, at longer mixing times, a further decrease in particle size is obtained as a result of the compatibilization reactions. The shift between the two regimes is progressive and intimately related to the processing conditions. Despite such a complexity, not only the blend morphology but also the elastic properties of the rubber particles can be controlled in a broad range by an adequate adjustment of the relative kinetics between both physical and chemical processes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 703–718, 2004  相似文献   

20.
In this work, composition effects on interfacial tension and morphology of binary polyolefin blends were studied using rheology and electron microscopy. The amount of dispersed phase (5–30 wt %) and its type [ethylene–octene copolymer, linear low‐density polyethylene (LLDPE), and high‐density polyethylene] was varied, and the influence of different matrix materials was also studied by using a polypropylene homopolymer and a ethylene–propylene (EP) random copolymer. The particle size distribution of the blends was determined using micrographs from transmission electron microscopy (TEM). A clear matrix effect on the flow behavior could be found from the viscosity curves of the blends. Analyzing the viscosity of the blends applying the logarithmic mixing rule indicated a partial miscibility of the EP random copolymer with low amounts of the LLDPE in the melt. Micrographs from TEM also showed a clear difference in morphology if the base polymer is changed, with PE lamellae growing out of the inclusions or being present directly embedded in the matrix. To verify these findings, the interfacial tension was determined. The applicability of Palierne's emulsion model was found to be limited for such complex systems, whereas Gramespacher–Meissner analysis led to interfacial tensions comparable with those already reported in the literature. The improved compatibility when changing the matrix polymer from the homopolymer to the random copolymer allows the development of multiphase materials with finer phase structure, which will also result in improved mechanical and optical performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号