首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solid‐state structure of syndiotactic polystyrene (s‐PS) after crystallization from the melt and the glassy state was examined by differential scanning calorimetry (DSC), density, and X‐ray diffraction analysis. It was possible to prepare semicrystalline s‐PS containing either the pure α‐ or the pure β‐crystalline form by melt crystallizing s‐PS from 280 or 330°C. The measurements confirmed the low density of both crystalline forms, which in the case of α‐crystalline form was smaller and in the case of β‐crystalline form was only slightly larger than the density of the glassy amorphous s‐PS. An endeavor to introduce the crystalline phase in s‐PS through cold crystallization at constant temperature above the glass transition resulted in a complex ordered phase. This ordered phase, depending on the crystallization temperature, contained the planar chain mesomorphic phase and the α‐crystalline phase with a low degree of perfection (cold crystallization in the range 120–175°C) or a mixture of the α‐ and β‐crystalline forms with a high degree of perfection (cold crystallization in the range 210–260°C). The combination of DSC and X‐ray measurements enabled us to resolve the complex ordered structure in semicrystalline s‐PS after cold crystallization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2705–2715, 2002  相似文献   

2.
Analyses of the isothermal and nonisothermal melt kinetics for syndiotactic polystyrene have been performed with differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The regime II→III transition, at a crystallization temperature of 239°, is found. The values of the nucleation parameter Kg for regimes II and III are estimated. The lateral‐surface free energy, σ = 3.24 erg cm?2, the fold‐surface free energy, σe = 52.3 ± 4.2 erg cm?2, and the average work of chain folding, q = 4.49 ± 0.38 kcal/mol, are determined with the (040) plane assumed to be the growth plane. The observed crystallization characteristics of syndiotactic polystyrene are compared with those of isotactic polystyrene. The activation energies of isothermal and nonisothermal melt crystallization are determined to be ΔE = ?830.7 kJ/mol and ΔE = ?315.9 kJ/mol, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2528–2538, 2002  相似文献   

3.
Nonisothermal cold‐ and melt‐crystallization of syndiotactic polystyrene (sPS) were carefully carried out by Perkin–Elmer Diamond differential scanning calorimetry, polarized optical microcopy (POM), and wide angle X‐ray diffraction. The experimental data subjected to the two types of processing were thoroughly analyzed on the basis of Avrami, Tobin, Ziabicki, and combination of Avrami and Ozawa models. Avrami, Tobin, and Ziabicki analyses indicate that nonisothermal cold‐crystallization (A) characterizes smaller Avami and Tobin exponent and larger Ziabicki kinetic crystallizability index G than those obtained from nonisothermal melt‐crystallization (B) possibly due to the existence of partially ordered structures in the quenched samples. Kissinger and the differential isoconversional method (DICM) of Friedman's were utilized to obtain effective energy barrier of A, in good agreement with that obtained by using Arrhenius equation to analyze the isothermal cold‐crystallization, indicating that Kissinger and Friedman equations can be applied to obtain activation energy from A of sPS. X‐ray diffraction analysis indicates that cold‐crystallization mainly produces α‐type crystal but for melt‐crystallization the contents of α‐type and β‐type crystals depend on the cooling rates. The POM also indicates the difference of end morphology of the sample between A and B. At the same time, the DICM of Friedman's was applied to analyze experimental data of B, which were divided into two groups with 20 K/min as the threshold, and it was found that the formation of β‐type crystal possesses larger absolute value of effective activation barrier than the formation of α‐type crystal. © 2006Wiley Periodicals, Inc. J Appl Polym Sci 103: 1311–1324, 2007  相似文献   

4.
Syndiotactic polystyrene (sPS) based polymer nanocomposites have been prepared using surfactant‐free layered double hydroxides (SF‐LDHs) by a modified solvent mixing method with different loadings of 1, 2.5, 5 and 10 wt%. The nanocomposite preparation process involves a wash treatment of as‐prepared SF‐LDHs in an appropriate organic solvent followed by gel formation in a non‐polar solvent. The gel was directly used to make highly dispersed polymer nanocomposites. The influence of highly dispersed SF‐LDH platelets on the crystallization, polymorphism, thermal stability and flame retardancy of sPS was examined. It was shown that SF‐LDHs significantly enhance the crystallization rate of sPS and favour the formation of the thermodynamically stable β form along with the α form of sPS. Moreover, highly dispersed SF‐LDHs decrease the heat release rate and total heat release of sPS indicating the enhancement of flame‐retardant properties of sPS. In this way, it was found that the dispersed SF‐LDH platelets act as a multifunctional nanofiller for sPS. © 2015 Society of Chemical Industry  相似文献   

5.
The kinetics of the isothermal and nonisothermal cold crystallization of syndiotactic polystyrene (s‐PS) were characterized with differential scanning calorimetry. A Johnson–Mehl–Avrami analysis of the isothermal experiments indicated that the cold crystallization of s‐PS at a constant temperature followed a diffusion‐controlled growth mode with a decreasing nucleation rate. Furthermore, the slow nucleation rate was the controlling step of the entire kinetic process. For nonisothermal cold‐crystallization kinetics, we used a simple model based on a combination of the well‐known Avrami and Ozawa models. The analysis revealed that, unlike for melt crystallization, the Avrami and Ozawa exponents were not equal. The activation energies for the isothermal and nonisothermal cold crystallizations of s‐PS were 792.0 and 148.62 kJ mol?1, respectively, indicating that the smaller motion units in cold crystallization had a weaker temperature dependence than those in melt crystallization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3464–3470, 2003  相似文献   

6.
1,2‐Syndiotactic polybutadiene was synthesized at ?30°C using the catalyst system CrCl2(dmpe)2‐MAO. The syndiotactic index of the butadiene sequences, expressed as a percentage of syndiotactic pentads [rrrr], was evaluated by 13C‐NMR measurements. WAXD and SAXS techniques were employed to characterize the crystalline structure of the polymer. The thermal behavior of the polybutadiene was investigated by differential scanning calorimetry. The isothermal crystallization kinetics were described by means of the Avrami equation, which suggested a three‐dimensional growth of crystalline units, developed by heterogeneous nucleation, followed by a secondary crystallization stage. Polybutadiene isothermally crystallizes from the melt according to regime II of crystallization described by Lauritzen–Hoffman secondary nucleation theory. Nonisothermal crystallization kinetics were elaborated using the Ziabicki and Avrami methods modified by Jeziorny. The equilibrium melting temperature was calculated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1680–1687, 2004  相似文献   

7.
Two 1,2‐polybutadiene samples, ie syndiotactic 1,2‐polybutadiene (sPB) and atactic 1,2‐polybutadiene (aPB), were synthesized by using the same Iron(III ) catalyst system, although with changing contents of the third catalyst component. Effects of the composition of aPB on the crystallization behavior of sPB have been characterized by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). Analysis of the results indicates that the intensity of the (010) peak of sPB is influenced much more easily than that of the (200)/(110) peak by the amorphous aPB sample, but the structure of sPB does not change with the changing composition of sPB. aPB is thermodynamically miscible with sPB in the melt, and retards the melt crystallization of sPB. At the same time, non‐isothermal crystallization kinetic studies of neat sPB and 1/2.5 blends were carried out by DSC. The Avrami equations modified by Jeziorny and Privalko, were used to fit the primary stage of the non‐isothermal crystallizations of neat sPB and the 1/2.5 blends. A larger Avrami exponent for neat sPB than for the blends was observed, and possible reasons are discussed. The activation energies (ΔE) were determined to be ?88 and ?106 kJ mol?1 by the isoconversional Friedman method for neat sPB and sPB in the blends, respectively. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
A series of polymer–clay nanocomposite (PCN) materials consisting of polystyrene (PS) and layered montmorillonite (MMT) clay was prepared by effectively dispersing the inorganic nanolayers of MMT clay in the organic PS matrix via in situ thermal polymerization. Organic styrene monomers were first intercalated into the interlayer regions of organophilic clay hosts, followed by a typical free radical polymerization with BPO as the initiator. The as‐synthesized PCN materials were characterized by infrared spectroscopy (IR), wide‐angle powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). PCN coatings with low clay loading (1 wt %) on cold‐rolled steel (CRS) were found to be superior in anticorrosion to those of bulk PS, based on a series of electrochemical measurements of corrosion potential, polarization resistance and corrosion current in a 5 wt % aqueous NaCl electrolyte. The molecular weights of PS extracted from PCN materials and bulk PS were determined by gel permeation chromatography (GPC) with tetrahydrofuran (THF) as the eluent. The effects of material composition on molecular barrier and thermal stability of PS and PCN materials, in the form of both free‐standing films and fine powders, were also studied by molecular permeability analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1970–1976, 2004  相似文献   

9.
In this study, we modified montmorillonite (MMT) with dilauryl dimethyl ammonium bromide (DDAB) and then exfoliated the structures in a poly(L ‐lactic acid) (PLLA) matrix. We used polar optical microscopy and X‐ray diffraction (XRD) to examine the morphologies of the resulting composites, differential scanning calorimetry to study the melting and crystallization behavior, and Fourier transform infrared (FTIR) and Raman spectroscopy to measure the influence of the intermolecular interactions between PLLA and MMT on the isothermal crystallization temperature. We found that the DDAB‐modified MMT was distributed uniformly in the PLLA matrix. At temperatures ranging from 130 to 140°C, the crystalline morphology resembled smaller Maltese cross‐patterned crystallites; at temperatures from 150 to 170°C, however, the number of crystallites decreased, their sizes increased, and they possessed ringed spherulite structures. In the XRD spectra, the intensity of the diffraction peaks of the 200/110 and 203 facets of the PLLA/MMT nanocomposites decreased as the crystallization temperature increased. In the FTIR spectra, the absorption peak of the C?O groups split into two signals at 1748 and 1755 cm?1 when the isothermal crystallization temperature was higher than 140°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Syndiotactic polystyrene (sPS)/organophilic clay nanocomposites were fabricated by direct‐melt intercalation method. To overcome the thermal instability of organophilic clay at high‐melt processing temperatures of sPS, an organophilic clay modified by alkyl phosphonium was adopted, which is known to be thermally stable. By using the newly synthesized clay, we could fabricate sPS intercalated nanocomposites. The microstructures of nanocomposites were confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallization rate of nanocomposites investigated by differential scanning calorimetry (DSC) does not increase despite the presence of clay, which may be due to the physical hindrance of organic modifiers in the clay dispersion. Nanocomposites exhibited enhanced mechanical properties such as strength and stiffness relative to the virgin polymer. In addition, thermal stability was confirmed to be improved by thermogravimetric analysis (TGA). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2144–2150, 2004  相似文献   

11.
Syndiotactic polystyrene (sPS)/montmorillonite nanocomposites were prepared via in situ intercalative coordination polymerization using mono‐(η5‐pentamethylcyclopenta‐ dienyl) tribenzyloxy titanium [Cp*Ti(OBz)3] complex activated by methylaluminoxanes (MAO) and triisobutylaluminum (TIBA). The influences of polymerization conditions, such as the weight ratio of montmorillonite and styrene, temperature, and monomer concentration, on the preparation of sPS/montmorillonite nanocomposites was investigated. The intercalation spacing in the nanocomposites, as well as the exfoliation of the montmorillonite interlayers, was characterized with wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). The dispersibility of the nanoscale elements depended on the polymerization conditions and the surfactant treatment. The crystallizability and thermal properties of these nanocomposites were determined by differential scanning calorimetry (DSC) analysis and thermogravimetric analysis (TGA). Experimental results indicated that the degree of crystallinity of the sPS nanocomposite increased with increasing montmorillonite content and with higher Tg and thermal decomposition temperature than pure sPS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1412–1417, 2005  相似文献   

12.
Blends of isotactic polypropylene (PP) and syndiotactic polystyrene (sPS) with and without β‐nucleating agent were prepared using a twin‐screw extruder at 290 °C. Blends of PP/sPS with β‐nucleating agent mainly show β crystalline form, irrespective of high (20 °C min?1) or low (2 °C min?1) previous cooling rates. This suggests that the cooling rates have little effect on the polymorphic composition of PP in PP/sPS blends. The effect of sPS on the crystallization of PP is compared with that of polyamide 6 (PA6). The increase in crystallization temperature of PP is smaller in the presence of sPS than in the presence of PA6; the fold surface free energy of PP/sPS is larger than that of PP/PA6 blends. These results reveal that compared with PA6, sPS has much weaker α‐nucleation effect on the crystallization of PP. The weak α‐nucleation effect of sPS is attributed to the high lattice mismatch between PP and sPS crystals.  相似文献   

13.
V. Vittoria  R. Russo  F. de Candia 《Polymer》1991,32(18):3371-3375
Transport properties of different liquids inducing crystallization in syndiotactic polystyrene (sPS) were investigated at 25°C. The weight uptake kinetics in the different liquids imply Fickian behaviour, with the exclusion of n-hexane and cyclohexane for which the weight uptake starts after an induction time. The equilibrium concentration of the different liquids in sPS is a function of the solubility parameter and shows a maximum with respect to chloroform, indicating a maximum in the polymer-solvent interaction. The swollen samples are birefringent but appear substantially amorphous on the basis of the X-ray diffractograms. After drying a well developed crystalline order appears, and the diffractograms indicate the presence of solvated structures, characterized by chains in helical conformation.  相似文献   

14.
Syndiotactic polystyrene (sPS) and poly(phenylene oxide) (PPO) blends, miscible in the melt state, were crystallized from the melt and the quenched state at different temperatures. The effect of the crystallization temperature on the phase behavior of the blends and the polymorphic changes in sPS was investigated by dynamic mechanical analysis (DMA), wide‐angle X‐ray diffraction (WAXD), and density measurements. In most blends, the crystallization of sPS induced segregation into two homogeneous amorphous phases of different compositions. The temperatures of the DMA relaxations of the neat homopolymers and crystallized blends were fit by the Gordon–Taylor relation to calculate the compositions of these phases. In melt‐crystallized blends, with slower crystallization, the major amorphous phase became sPS‐rich, whereas the minor phase became PPO‐rich. These major and minor amorphous phases could be tentatively assigned to interfibrillar and interlamellar regions, respectively. In cold‐crystallized blends, slower crystallization decreased the sPS concentration in both phases, and the scale of segregation was much smaller. WAXD studies and density measurements indicated a complex polymorphic behavior of sPS after it was blended with PPO. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1975–1983, 2003  相似文献   

15.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

16.
The influence of nanoclay particles on the nonisothermal crystallization behavior of intercalated polyethylene (PE) prepared by melt‐compounding was investigated. It is observed that the crystallization peak temperature (Tp) of PE/clay nanocomposites is slightly but consistently higher than the neat PE at various cooling rates. The half‐time (t0.5) for crystallization decreased with increase in clay content, implying the nucleating role of nanoclay particles. The nonisothermal crystallization data are analyzed using the approach of Avrami (Polymer 1971, 12, 150), Ozawa (Polym Eng Sci 1997, 37, 443), and Mo and coworkers (J Res Natl Bur Stand 1956, 57, 217), and the validity of the different kinetic models to the nonisothermal crystallization process of PE/clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully explains the nonisothermal crystallization behavior of PE and PE/clay nanocomposites. The activation energy for nonisothermal crystallization of neat PE and PE/clay nanocomposites is determined using the Kissinger (J Res Natl Bur Stand 1956, 57, 217) method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3809–3818, 2006  相似文献   

17.
A zinc salt of a lightly sulfonated (4.5 mol %) polystyrene ionomer was used to compatibilize a 3/1 (w/w) blend of syndiotactic polystyrene and a wholly aromatic thermotropic liquid‐crystalline polymer (TLCP). The addition of the ionomer significantly reduced the dispersed TLCP domain size and improved the tensile strength, ultimate elongation, and flexural toughness of the blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 564–568, 2003  相似文献   

18.
Polyester/clay nanocomposites were prepared by melt compounding with different clay loadings. Comparing against neat polyester resins, the crystallization and multiple melting behavior of the nanocomposites was investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). Nanoclay filler is an effective heterogeneous nucleating agent, as evidenced by a decrease and an increase in the crystallization temperature for both cold and melt crystallization of polyesters, respectively. The degree of crystallinity was found to increase with increasing clay content, due to heterogeneous nucleation effects by the addition of a nanofiller. For the annealed samples, multiple melting peaks were always observed for both neat polyester and its nanocomposites. The origins of the multiple melting behavior are discussed, based on the DSC and XRD results. Interestingly, an ‘abnormal’ high‐temperature endothermic peak (Tm, 3) at about 260 °C was observed when the nanocomposite samples were annealed at higher temperatures (eg ≥240 °C). The constrained polyester crystals formed within intercalated clay platelets due to confinement effects were probably responsible for this melting event at these higher temperatures. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Nonisothermal melt‐crystallization behavior of syndiotactic polypropylene (sPP) compounded with 5% by weight (wt %) of some inorganic fillers [i.e., kaolin, talcum, marl, titanium dioxide (TiO2), and silicon dioxide (SiO2)] and 1 wt % of some organic fillers, which are some sorbital derivatives (i.e., DBS, MDBS, and DMDBS) was investigated and reported for the first time. It was found that the ability of these fillers to nucleate sPP decreased in the following sequence: DBS > talcum > MDBS > SiO2 ~ kaolin ~ DMDBS > marl > TiO2, with DBS being able to shift the crystallization exotherm by ~ 18°C on average, while TiO2 was able to shift the crystallization exotherm by only ~ 6°C on average, from that of neat sPP. The Avrami analysis revealed that the Avrami exponent for sPP compounds varied between 2.9 and 4.3, with the values for neat sPP varying between 3.1 and 6.8. Lastly, the Ziabicki's crystallizability of sPP compounds was greater than that of neat sPP, suggesting an increase in the crystallization ability of sPP as a result of the presence of these fillers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 245–253, 2005  相似文献   

20.
The compatibilization of syndiotactic polystyrene (sPS)/polyamide 6 (PA‐6) blends with maleic anhydride grafted syndiotactic polystyrene (sPS‐g‐MA) as a reactive compatibilizer was investigated. The sPS/PA‐6 blends were in situ compatibilized by a reaction between the maleic anhydride (MA) of sPS‐g‐MA and the amine end group of PA‐6. The occurrence of the chemical reaction was substantiated by the disappearance of a characteristic MA peak from the Fourier transform infrared spectrum. Morphology observations showed that the size of the dispersed PA‐6 domains was significantly reduced and that the interfacial adhesion was much improved by the addition of sPS‐g‐MA. As a result of reactive compatibilization, the impact strengths of the sPS/PA‐6 blends increased with an increase in the sPS‐g‐MA content. The crystallization behaviors of the blends were affected by the compatibilization effect of sPS‐g‐MA. A single melting peak of sPS in the noncompatibilized blend was gradually split into two peaks as the amount of the compatibilizer increased. A single crystallization peak of PA‐6 in the noncompatibilized blend became two peaks with the addition of 3 wt % sPS‐g‐MA. The new peak was a result of the fractionation crystallization. As the amount of sPS‐g‐MA increased, the intensity of the new peak increased, and the original peak nearly disappeared. Finally, the crystallization peak of PA‐6 disappeared with 20 wt % sPS‐g‐MA in the blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2502–2506, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号