首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of poly(ester amide)s were synthesized by solution polycondensations of various combinations of p‐toluenesulfonic acid salts of O,O′‐bis(α‐aminoacyl)‐1,4:3,6‐dianhydro‐D ‐glucitol and bis(p‐nitrophenyl) esters of aliphatic dicarboxylic acids with the methylene chain lengths of 4–10. The p‐toluenesulfonic acid salts were obtained by the reactions of 1,4:3,6‐dianhydro‐D ‐glucitol with alanine, glycine, and glycylglycine, respectively, in the presence of p‐toluenesulfonic acid. The polycondensations were carried out in N‐methylpyrrolidone at 40°C in the presence of triethylamine, giving poly(ester amide)s having number‐average molecular weights up to 3.8 × 104. Their structures were confirmed by FTIR, 1H‐NMR, and 13C‐NMR spectroscopy. Most of these poly(ester amide)s are amorphous, except those containing sebacic acid and glycine or glycylglycine units, which are semicrystalline. All these poly(ester amide)s are soluble in a variety of polar solvents such as dimethyl sulfoxide, N,N‐dimethylformamide, 2,2,2‐trifluoroethanol, m‐cresol, pyridine, and trifluoroacetic acid. Soil burial degradation tests, BOD measurements in an activated sludge, and enzymatic degradation tests using Porcine pancreas lipase and papain indicated that these poly(ester amide)s are biodegradable, and that their biodegradability markedly depends on the molecular structure. The poly(ester amide)s were, in general, degraded more slowly than the corresponding polyesters having the same aliphatic dicarboxylic acid units, both in composted soil and in an activated sludge. In the enzymatic degradation, some poly(ester amide)s containing dicarboxylic acid components with shorter methylene chain lengths were degraded more readily than the corresponding polyesters with Porcine pancreas lipase, whereas most of the poly(ester amide)s were degraded more rapidly than the corresponding polyesters with papain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2721–2734, 2001  相似文献   

2.
A series of aliphatic–aromatic poly(carbonate‐co‐ester)s poly(butylene carbonate‐co‐terephthalate)s (PBCTs), with weight‐average molecular weight of 113,000 to 146,000 g/mol, were synthesized from dimethyl carbonate, dimethyl terephthalate, and 1,4‐butanediol via a two‐step polycondensation process using tetrabutyl titanate as the catalyst. The PBCTs, being statistically random copolymers, show a single Tg over the entire composition range. The thermal stability of PBCTs strongly depends on the molar composition. Melting temperatures vary from 113 to 213°C for copolymers with butylene terephthalate (BT) unit content higher than 40 mol %. The copolymers have a eutectic melting point when about 10 mol % BT units are included. Crystal lattice structure shifts from the poly(butylene carbonate) to the poly(butylene terephthalate) type crystal phase with increasing BT unit content. DSC and WAXD results indicate that the PBCT copolymers show isodimorphic cocrystallization. The tensile modulus and strength decrease first and then increase according to copolymer composition. The enzymatic degradation of the PBCT copolymers was also studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41952.  相似文献   

3.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

4.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   

5.
BACKGROUND: To obtain a biodegradable thermoplastic elastomer, a series of poly(ester‐ether)s based on poly(butylene succinate) (PBS) and poly(propylene glycol) (PPG), with various mass fractions and molecular weights of PPG, were synthesized through melt polycondensation. RESULTS: The copolyesters were characterized using 1H NMR, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, mechanical testing and enzymatic degradation. The results indicated that poly(ester‐ether)s with high molecular weights were successfully synthesized. The composition of the copolyesters agreed very well with the feed ratio. With increasing content of the soft PPG segment, the glass transition temperature decreased gradually while the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased. Mechanical testing demonstrated that the toughness of PBS was improved significantly. The elongation at break of the copolyesters was 2–5 times that of the original PBS. Most of the poly(ester‐ether) specimens were so flexible that they were not broken in Izod impact experiments. At the same time, the enzymatic degradation rate of PBS was enhanced. Also, the difference in molecular weight of PPG led to properties being changed to some extent among the copolyesters. CONCLUSION: The synthesized poly(ester‐ether)s having excellent flexibility and biodegradability extend the application of PBS into the areas where biodegradable thermoplastic elastomers are needed. Copyright © 2009 Society of Chemical Industry  相似文献   

6.
Functional poly(carbonate‐b‐ester)s were synthesized in buck by ring‐opening polymerization of the carbonate (TMC, MBC, or BMC) with tert‐butyl N‐(2‐hydroxyethyl) carbamate as an initiator, and then with ε‐CL (or ε‐BCL) comonomer. Subsequently, the PMMC‐b‐PCL with pendent carboxyl groups and the PTMC‐b‐PHCL with pendent hydroxyl groups were obtained by catalytic debenzylation. DSC analysis indicated that only one Tg at an intermediate temperature the Tgs of the two polymer blocks. A decrease Tg was observed when an increase contents of ε‐CL incorporated into the copolymers. In contrast, two increased Tms were observed with increasing PCL content. The block copolymers formed micelle in aqueous phase with critical micelle concentrations (cmcs) in the range of 2.23–14.6 mg/L and with the mean hydrodynamic diameters in the range of 100–280 nm, depending on the composition of copolymers. The drug entrapment efficiency and hydrolytic degradation behavior of micelle were also evaluated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

7.
A copolymer of styrene with N‐benzyl‐4‐vinylpyridinium chloride (BVP), poly(styrene‐coN‐benzyl‐4‐vinylpyridinium chloride) (PST‐co‐BVP), was degradable by activated sludge in soil when the oligo‐styrene portion was sufficiently small. The degradation of the equimolar copolymer followed first‐order kinetics when the polymer sample was 1.0 or 0.5 g/kg and gave a half‐life of 5.6 days. The degradation of PST‐co‐BVP with a reduced BVP content did not follow first‐order kinetics under the aforementioned conditions but appeared to follow the kinetics when the amount of the polymer sample was sufficiently small. Under the ultimate conditions, the half‐life of PST‐co‐BVP that contained 10.6 mol % BVP was estimated to be 12.5 days, and the half‐life of PST‐co‐BVP that contained 5 mol % BVP was expected to be 30–40 days. The incorporation of 5 mol % BVP appeared sufficient for making PST‐co‐BVP substantially biodegradable if we did not expect exceptionally rapid degradation. PST‐co‐BVP was different from conventional polystyrene but possessed biodegradability. Random scission of the main chain much predominated over uniform scission from the end of the polymer chain in the biodegradation of PST‐co‐BVP. The cleavage of the main chain at BVP appeared predominant over that of oligo‐styrene. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 554–559. 2006  相似文献   

8.
Two series of thermotropic liquid crystalline copolyesters containing mainly the p‐oxybenzoate unit were studied by thermogravimetry to ascertain the kinetic parameters of their thermal degradation by six multiple heating‐rate techniques for the first time. The two copolyesters are (1) poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate) and (2) poly(p‐oxybenzoate‐co‐2,6‐oxynaphthoate). The effect of copolymer composition, degradation stage, and test atmosphere on the three kinetic parameters of the thermal degradation in the weight loss range from 5 to 70% is discussed. Comparison of the multiple heating‐rate techniques with single heating‐rate techniques for calculating the kinetic parameters of thermal degradation was made. The respective activation energy, order, and natural logarithm of the frequency factor of the thermal degradation in nitrogen for the poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate)s are between 180 and 230 kJ/mol, between 2.0 and 5.0, and between 28 and 38 min−1 for the first degradation step and between 250 and 390 kJ/mol, between 6.4 and 7.6, and between 38 and 64 min−1 for the second degradation step of the poly(p‐oxybenzoate‐co‐ethylene terephthalate‐co‐vanillate)s with the unit‐B content in the range of 70–75 mol %. The respective activation energy, order, and natural logarithm of frequency factor of the first degradation stage for the poly(p‐oxybenzoate‐co‐2,6‐oxynaphthoate) (Vectra) are between 380 and 570 kJ/mol, between 2.0 and 3.1, and between 55 and 68 min−1 in nitrogen and between 160 and 210 kJ/mol, between 0.8 and 1.8, and between 25 and 32 min−1 in air. The best methods of calculating the kinetic parameters of the thermal degradation for the copolymers are suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2016–2028, 1999  相似文献   

9.
A three‐component bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane (BDM), o,o′‐diallyl bisphenol A (DBA), and o,o′‐dimethallyl bisphenol A (1.0/0.3/0.7 eq ratio) was used as a parent bismaleimide resin. Modification of the three‐component bismaleimide resin was examined by blending it with poly(ether ketone ketone)s. Poly(ether ketone ketone)s include poly(phthaloyl diphenyl ether) (PPDE), poly(phthaloyl diphenyl ether‐co‐isophthaloyl diphenyl ether) (PPIDE), and poly(phthaloyl diphenyl ether‐co‐terephthaloyl diphenyl ether) (PPTDE). The PPIDE (51 mol % isophthaloyl) and PPTDE (44 mol % terephthaloyl) were more effective as modifiers for the bismaleimide resin than was PPDE. For example, the fracture toughness (KIC) for the modified resin increased 30% with no deterioration in the flexural strength and modulus with a 15 wt % inclusion of PPTDE (MW 23,400) compared to the parent three‐component bismaleimide resin: the KIC increased 95% compared to the value for the Matrimid 5292 resin composed of BDM and DBA. The morphologies of the modified resins changed from particulate to cocontinuous phase structures, depending on the modifier structure and concentration. Toughening of the cured bismaleimide resin could be achieved because of the cocontinuous phase structure. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2991–3000, 2001  相似文献   

10.
A series of poly(ester imide ketone)s derived from N,N′‐hexane‐1,6‐diylbis(trimellitimide), 4,4′‐dihydroxybenzophenone, and p‐hydroxybenzoic acid (PHB) were synthesized by the direct polycondensation method in benzene sulfonyl chloride, dimethylformamide, and pyridine with varied PHB contents. The liquid crystalline behavior and thermal properties of the poly(ester imide ketone)s were characterized by polarized‐light microscopy, wide‐angle X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry, and temperature‐modulated differential scanning calorimetry (MDSC). The results showed that the synthesized polymers possessed a nematic thermotropic liquid crystalline characteristic and high thermal stability. The liquid crystalline polymers, with a PHB content ranging from 0 to 50 mol %, exhibited multiple phase transitions as evidenced by the MDSC results. A transitional smectic phase from solid state to nematic thermotropic liquid crystalline state was observed, and a transition model is proposed. Under certain conditions, the polymer with 33 mol % PHB content showed two significantly different liquid crystalline textures. This type of liquid crystalline polymer exhibited excellent fiber forming. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1045–1052, 2003  相似文献   

11.
For medical applications, 4,4′‐dicyclohexyl methane diisocyanate (HMDI)‐based poly(carbonate urethane)s were synthesized from HMDI and 1,4‐butanediol as hard segments and poly(carbonate diol) (number‐average molecular weight = 2000 g/mol) as soft segments. The effects of wide‐range γ irradiation on the samples were examined through a series of analytical techniques. Scanning electron microscopy revealed that γ irradiation etched and roughened the surfaces of the irradiated samples. The gel content and crosslinking density measurements confirmed that crosslinking occurred along with degradation at all of the investigated irradiation doses and the degree of both crosslinking and degradation increased with increasing irradiation dose. Fourier transform infrared spectroscopy demonstrated that chain scission in the γ‐irradiated samples occurred at the carbonate and urethane bonds. The decreasing molecular weight and tensile strength indicated that the degradation increased with the γ‐irradiation dose. Differential scanning calorimetry and dynamic mechanical thermal analysis indicated that γ irradiation had no significant effect on the phase‐separation structures. There was a slight reduction in the contact angle. An evaluation of the cytotoxicity demonstrated the nontoxicity of the nonirradiated and irradiated polyurethanes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41049.  相似文献   

12.
Poly(silyl ester)s were synthesized by a new route via the condensation of di‐tert‐butyl ester of dicarboxylic acid with dichlorosilane by the elimination of tert‐butyl chloride as a driving force. Three new poly(silyl ester)s with molecular weights typically ranging from 2000 to 5000 amu were produced by the condensation of di‐tert‐butyl adipate with 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl trisiloxane and di‐tert‐butyl fumarate with 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl trisiloxane or 1,3‐dichlorotetramethyl disiloxane. Each polymer was characterized with infrared, 1H‐NMR, and 13C‐NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. This new approach showed several advantages. First, it did not require a catalyst or solvent. Second, the tert‐butyl chloride byproduct was volatile and was easily eliminated. Third, there was no reaction between the growing poly(silyl ester)s and the condensation byproduct, tert‐butyl chloride. Fourth, the monomers could be readily purified. Finally, the polymerization could be performed at relatively low temperatures and in a short time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1378–1384, 2006  相似文献   

13.
Thermotropic liquid‐crystalline copoly(ester‐amide)s consisting of three units of p‐oxybenzoate (B), ethylene terephthalate (E) and p‐benzamide (A) were studied by proton nuclear magnetic resonance at 200 and 400 MHz, wide‐angle X‐ray diffraction, and high‐resolution thermogravimetry to ascertain their molecular and supermolecular structures, thermostability and kinetics parameters of thermal decomposition in both nitrogen and air. The assignments of all resonance peaks of [1H]NMR spectra for the copoly(ester‐amide)s are given and the characteristics of X‐ray equatorial and meridional scans are discussed. Overall activation energy data of the first major decomposition have been evaluated through three calculating techniques. The thermal degradation occurs in three steps in nitrogen and air. The degradation temperatures are higher than 447 °C in nitrogen and 440 °C in air and increase with increasing B‐unit content at a fixed A‐unit content of 5 mol%. The temperatures at the first maximum weight‐loss rate are higher than 455 °C in nitrogen and 445 °C in air and also increase with an increase in B‐unit content. The first maximum weight‐loss rates range between 11.1 and 14.5%min−1 in nitrogen and between 11.9 and 13.5%min−1 in air. The char yields at 500 °C in both nitrogen and air range from 45.8 to 54.3 wt% and increase with increasing B‐unit content. But the char yields at 800 °C in nitrogen and air are quite irregular with the variation of copolymer composition and testing atmosphere. The activation energy and Ln (pre‐exponential factor) for the first major decomposition are usually higher in nitrogen than in air and increase slightly with an increase in B‐unit content at a given A‐unit content of 5 mol%. The activation energy, decomposition order, and Ln (pre‐exponential factor) of the thermal degradation for the copoly(ester‐amide)s in two testing atmospheres, are situated in the ranges of 210–292 kJmol−1, 2.0–2.8, 33–46 min−1, respectively. The three kinetic parameters of the thermal degradation for the aromatic copoly(ester‐amide)s obtained by high‐resolution thermogravimetry at a variable heating rate are almost the same as those by traditional thermogravimetry at constant heating rate, suggesting good applicability of kinetic methods developed for constant heating rate to the variable heating‐rate method. These results indicate that the copoly(ester‐amide)s exhibit high thermostability. The isothermal decomposition kinetics of the copoly(ester‐amide)s at 450 and 420 °C are also discussed and compared with the results obtained based on non‐isothermal high‐resolution thermogravimetry. © 1999 Society of Chemical Industry  相似文献   

14.
The structure and properties of poly(deamino‐tyr‐tyr carbonate hexyl ester), in dilute and semidilute solutions, were studied using static, dynamic light scattering, and viscometry. The overlap concentration, c* is determined by viscosity. The angular dependence of Zimm plots shows no downturn at low angles. In addition, bimodal distribution curves were computed from the quasielastic measurements. The radius of gyration and the second virial coefficient A2 are found to be respectively 45.8 nm and 9.4 mol cm3 g?2. The correlation and persistence lengths are discussed. The poly (deamino‐tyr‐tyr carbonate hexyl ester) or poly(DTH‐carbonate) chain in THF, at T = 20°C, behaves as a wormlike chain with persistence length. The persistence length obtained using light scattering is compared with that obtained using viscosity with good agreement. These values obtained from these measurements reflect a high degree of local chain persistence. The reduced viscosity in dilute regime provides a value of apparent viscosity hydrodynamic radius three times lower than obtained by static light scattering. POLYM. ENG. SCI., 50:1605–1612, 2010. © 2010 Society of Plastics Engineers  相似文献   

15.
A positive‐working, aqueous‐base‐developable photosensitive polyimide precursor based on poly(amic ester)‐bearing phenolic hydroxyl groups and a diazonaphthoquinone photosensitive compound was developed. The poly(amic ester) was prepared from a direct polymerization of 2,2′‐bis‐(3‐amino‐4‐hydroxyphenyl)hexafluoropropane and bis(n‐butyl)ester of pyromellitic acid in the presence of phenylphosphonic dichloride as an activator. Subsequently, the thermal imidization of the poly(amic ester) precursor at 300°C produced the corresponding polyimide. The inherent viscosity of the precursor polymer was 0.23 dL/g. The cyclized polyimide showed a glass‐transition temperature at 356°C and a 5% weight loss at 474°C in nitrogen. The structures of the precursor polymer and the fully cyclized polymer were characterized by Fourier transform infrared spectroscopy and 1H‐NMR. The photosensitive polyimide precursor containing 25 wt % diazonaphthoquinone photoactive compound showed a sensitivity of 150 mJ/cm2 and a contrast of 1.65 in a 3 μm film with 1.25 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 10 μm was obtained from this composition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 352–358, 2002  相似文献   

16.
The condensation of a mixture of dimethyl carbonate and phthalate derivatives with 1,4‐butanediol (BD), catalyzed by sodium alkoxide, generated high‐molecular weight poly(1,4‐butylene carbonate‐co‐aromatic ester)s with molecular weights (Mn) of 50–120 kDa. The subsequent addition of polyols [BD, glycerol propoxylate, 1,1,1‐tris(hydroxymethyl)ethane, or pentaerythritol] chopped these high‐molecular weight polymers to afford macrodiols or macropolyols with facile control of their molecular weights (Mn, 2000–3000 Da) and unique chain topological compositions. Macropolyols prepared by chopping poly(1,4‐butylene carbonate‐co‐terephthalate) were waxy in nature, whereas those containing isophthalate and phthalate units were oily. The macropolyols synthesized by this chopping method may have potential applications in the polyurethane industry. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43754.  相似文献   

17.
Various copolyesters were synthesized by bulk polycondensation of the respective combinations of 1,4;3,6‐dianhydro‐D ‐glucitol (1) as the diol component and 1,1‐bis[5‐(methoxycarbonyl)‐2‐furyl]ethane (3b) and seven dimethyl dialkanoates with methylene chain lengths of 4, 5, 6, 7, 8, 10, and 12 (4a–4g) as the dicarboxylic acid components. Most of the copolyesters were amorphous, while a copolyester composed of 1, 3b, and dodecanedioic acid (4g) (3b:4g = 25:75) units as well as homopolyesters derived from 1 and azelaic acid (4d), sebacic acid (4e), and dodecandioic acid (4g), respectively, were partially crystalline. All these homo‐ and copolyesters were soluble in chloroform, dichloromethane, pyridine, trifluoroacetic acid, and m‐cresol. The number‐average molecular weights of these polyesters were estimated to be in the range of 10,000–20,000 by SEC using chloroform as an eluent and standard polystyrene as a reference. The biodegradability of these copolyesters was assessed by enzymatic degradation using four different enzymes in a phosphate buffer solution at 37°C and by soil burial degradation tests in composted soil at 27°C. In general, biodegradability of the copolyesters decreased with increase in the difuran dicarboxylate 3b content. Copolyesters containing sebasic acid 4e units showed higher biodegradability. Soil burial degradation in the soil that was treated with antibiotics, together with electron microscopic observation, indicated that actinomycetes are mainly responsible for the degradation of the copolyesters containing 3b units in the present soil burial test. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3342–3350, 1999  相似文献   

18.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol‐A (6b), 4,4′‐hydroquinone (6c), 1,8‐dihydroxyanthraquinone (6d), 4,4‐dihydroxy biphenyl (6e), and 2,4‐dihydroxyacetophenone (6f) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly and are completed within 20 min, producing a series of optically active poly(ester‐imide)s with good yield and moderate inherent viscosity of 0.10–0.26 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐imide)s are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2211–2216, 2002  相似文献   

19.
The hydrolytic condensation of 1,3‐dichloro‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane under neutral conditions produced α'ω‐dihydroxy‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane (polymerization degree ≈ 4). The homofunctional condensation of α'ω‐dihydroxy‐1,3‐disila‐1,3‐diphenyl‐2‐oxaindane in a toluene solution and in the presence of activated carbon was performed, and dihydroxy‐containing oligomers with various degrees of condensation were obtained. Through the heterofunctional condensation of dihydroxy‐containing oligomers with α'ω‐dichlorodimethylsiloxanes in the presence of amines, corresponding block copolymers were obtained. Gel permeation chromatography, differential scanning calorimetry, thermomechanical analysis, thermogravimetry, and wide‐angle roentgenography investigations were carried out. Differential scanning calorimetry and roentgenography studies of the block copolymers showed that their properties were determined by the ratio of the lengths of the flexible and linear poly(dimethylsiloxane) and rigid poly(1,3‐disila‐1,3‐diphenyl‐2‐oxaindane) fragments in the macromolecular chain. At definite values of the lengths of the flexible and rigid fragments, a microheterogeneous structure was observed in the synthesized block copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1409–1417, 2002; DOI 10.1002/app.10335  相似文献   

20.
The antifolate‐type anticancer drug methotrexate (MTX) has for many years, in numerous laboratories, been a “workhorse” drug for conjugation with natural and synthetic macromolecular carriers for the purpose of enhancing bioavailability and lowering toxic side effects. In the project here described the polymer–drug conjugation strategy is utilized for the preparation of water‐soluble polyaspartamide–methotrexate conjugates in which the drug is carrier‐anchored through short spacers containing ester groups as biofissionable links. To this end, polyaspartamide carriers 1, poly‐α,β‐D,L ‐N‐(2‐hydroxyethyl)aspartamide, and 2, poly‐α,β‐D,L ‐N‐[2‐(2‐hydroxyethoxy)ethyl]aspartamide, are treated with MTX in DMF solution in the presence of a carbodiimide coupling agent and 4‐(dimethylamino)pyridine catalyst. The molar MTX/OH feed ratios, 0.28 and lower, are chosen in these coupling reactions so as to provide conjugates featuring drug‐loading levels in the approximate range of 3–16 mol % MTX, roughly corresponding to 6–28% by mass. The water‐soluble product polymers are purified by aqueous dialysis, collected in the solid state by freeze‐drying, and structurally characterized by 1H–NMR spectroscopy. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1844–1849, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号