首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Blends of two biodegradable semicrystalline polymers, poly(p‐dioxanone) (PPDO) and poly(vinyl alcohol) (PVA) were prepared with different compositions. The thermal stability, phase morphology and thermal behavior of the blends were studied by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). From the TGA data, it can be seen that the addition of PVA improves the thermal stability of PPDO. DSC analysis showed that the glass transition temperature (Tg) and the melting temperature (Tm) of PPDO in the blends were nearly constant and equal to the values for neat PPDO, thus suggesting that PPDO and PVA are immiscible. It was found from the SEM images that the blends were phase‐separated, which was consistent with the DSC results. Additionally, non‐isothermal crystallization under controlled cooling rates was explored, and the Ozawa theory was employed to describe the non‐isothermal crystallization kinetics. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
The miscibility of poly(3‐hydroxyvalerate) (PHV)/poly(p‐vinyl phenol) (PVPh) blends has been studied by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The blends are miscible as shown by the existence of a single glass transition temperature (Tg) and a depression of the equilibrium melting temperature of PHV in each blend. The interaction parameter was found to be −1.2 based on the analysis of melting point depression data using the Nishi–Wang equation. Hydrogen‐bonding interactions exist between the carbonyl groups of PHV and the hydroxyl groups of PVPh as evidenced by FTIR spectra. The crystallization of PHV is significantly hindered by the addition of PVPh. The addition of 50 wt % PVPh can totally prevent PHV from cold crystallization. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 383–388, 1999  相似文献   

3.
Distinctive features of free‐radical grafting of trans‐ethylene‐1,2‐dicarboxylic acid (TEDA) onto macromolecules of molten ethylene‐vinyl acetate copolymer (EVA) in the course of reactive extrusion have been investigated along with structure, mechanical characteristics, and high‐elastic properties of molten functionalized products (EVA‐g‐TEDA). It is shown that EVA‐g‐TEDA yield depends on both the peroxide initiator concentration and content of vinyl acetate units in the copolymer molecular structure. At functionalization, acid grafting is accompanied by secondary reactions of macromolecular degradation and crosslinking. With a low‐peroxide initiator concentration (0.1 wt %), degradation prevails; with a higher (0.3 wt %) concentration, crosslinking of macromolecules prevails. It is reported that monomers being grafted attach mostly over secondary carbon atoms in the polymer chain. EVA‐g‐TEDA appears to have a less perfect crystal structure with a lower‐melting temperature and crystallinity as against the starting polymer. The functionalized products display enhanced rigidity and lower deformability in comparison with the initial copolymer. Variations in the swelling ratio and melt strength of EVA‐g‐TEDA depend on the course of competing secondary processes of macromolecular degradation and crosslinking. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Crystalline poly(ethylene‐co‐vinyl alcohol) (EVOH) membranes were prepared by a thermally induced phase separation (TIPS) process. The diluents used were 1,3‐propanediol and 1,3‐butanediol. The dynamic crystallization temperature was determined by DSC measurement. No structure was detected by an optical microscope in the temperature region higher than the crystallization temperature. This means that porous membrane structures were formed by solid–liquid phase separation (polymer crystallization) rather than by liquid–liquid phase separation. The EVOH/butanediol system showed a higher dynamic crystallization temperature and equilibrium melting temperature than those of the EVOH/propanediol system. SEM observation showed that the sizes of the crystalline particles in the membranes depended on the polymer concentration, cooling rate, and kinds of diluents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2449–2455, 2001  相似文献   

5.
Three series of self‐synthesized poly(vinyl acetate)‐based low‐profile additives (LPAs), including poly(vinyl acetate), poly(vinyl chloride‐co‐vinyl acetate), and poly(vinyl chloride‐co‐vinyl acetate‐co‐maleic anhydride), with different chemical structures and molecular weights were studied. Their effects on the glass‐transition temperatures and mechanical properties for thermoset polymer blends made from styrene, unsaturated polyester, and LPAs were investigated by an integrated approach of the static phase characteristics, cured sample morphology, reaction kinetics, and property measurements. Based on Takayanagi mechanical models, the factors that control the glass‐transition temperature in each phase region of the cured samples and the mechanical properties are discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3347–3357, 2003  相似文献   

6.
Multiple melting behaviors and partial miscibility of ethylene‐vinyl acetate (EVA) copolymer/low density polyethylene (LDPE) binary blend via isothermal crystallization are investigated by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). Crystallization temperature T (°C) is designed as 30, 50, 70, 80°C with different crystallization times t (min) of 10, 30, 60, 300, 600 min. The increase of crystallization temperature and time can facilitate the growth in lateral crystal size, and also the shift of melting peak, which means the completion of defective secondary crystallization. For blends of various fractions, sequence distribution of ethylene segments results in complex multiple melting behaviors during isothermal crystallization process. Overlapping endothermic peaks and drops of equilibrium melting points of LDPE component extrapolated from Hoffman–Weeks plots clarify the existence of partial miscibility in crystalline region between EVA and LDPE. WAXD results show that variables have no perceptible influence on the predominant existence of orthorhombic crystalline phase structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A noncombustible tough poly(vinyl chloride) (tPVC) was prepared by suspension‐grafted copolymerization of poly(2‐ethylhexyl acrylate) (poly‐EHA; elastomer) with vinyl chloride (VC). Elastomer (poly‐EHA) was prepared by emulsion, mainly homopolymerization of 2‐ethylhexyl acrylate at a temperature of 30 ± 0.1°C in the presence of a redox system and with the advantage of dosing the monomer into two portions. Grafted‐suspension copolymerization of poly‐EHA with VC was carried out at 54 ± 0.1°C, keeping other reaction conditions only slightly modified in comparison with those for the polymerization of pure VC. An optimum content of the incorporated poly‐EHA in PVC was found to be in the range 7.5–8.5 wt %, whereas notched toughness of 85–87 kJ m?2 was reached. Both below and above the found range of the content of poly‐EHA, the toughness decreases. A copolymer prepared by a direct‐emulsion copolymerization of 2‐EHA and VC (poly‐EHA‐co‐VC) exhibited worse mechanical properties than the copolymer prepared by two polymerization steps. On the basis of experimental results, effects of the reaction procedure on the properties of resulting material are described. In addition to good mechanical properties, tPVC also shows its noncombustibly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2355–2362, 2002  相似文献   

8.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007  相似文献   

9.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

10.
The effect of nucleating agents on the crystallization behavior of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (Tc) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187°C. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2145–2152, 2002  相似文献   

11.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

12.
Alginate‐g‐vinyl sulfonic acid graft copolymer was synthesized through the graft copolymerization of vinyl sulfonic acid (VSA) onto alginate with an efficient system, i.e., potassium peroxydiphosphate (PDP)/thiourea in an aqueous medium. The effects of the concentration of thiourea, PDP, hydrogen ion, alginate, and VSA along with the time and temperature on the graft copolymerization were studied by the determination of the grafting parameters (grafting ratio, add‐on, conversion, grafting efficiency, and homopolymer). The synthesized graft copolymer was characterized by FTIR analysis. Thermogravimetric analysis showed that the alginate‐g‐vinyl sulfonic acid is thermally more stable than alginate. Water swelling capacity, metal ion sorption, flocculation, and resistance to biodegradability studies of synthesized graft copolymer have been performed with respect to the parent polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
The chemistry of free‐radical graft copolymerization initiated with peroxomonosulfate (PMS)–thioglycolic acid (TGA) redox system has been investigated by using 4‐vinyl pyridine (4VP) as a model for nylon 6 fiber in aqueous solution under nitrogen atmosphere. Effects of concentration of 4VP, PMS, TGA, nylon 6, time, and temperature on Rh and graft parameters were studied. The FTIR spectrum of nylon 6‐g‐4VP was reported. Water retention capacity (WRC) of the grafted fiber was tested. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3108–3113, 2002  相似文献   

14.
The photodegradation (432 h under irradiation of Xe‐Lamp‐solar filter) of an ethylene vinyl acetate (EVA) copolymer with vinyl acetate content of 9% was studied, and the effect of iron and calcium stearates was evaluated using different techniques such us attenuated total reflectance‐Fourier transform infrared spectroscopy (ATR‐FTIR), gel permeation chromatography (GPC), and thermal analysis methods (DSC and TGA). A re‐arrangement in crystallization and consequent decrease in thermal stability were found through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), which were in agreement with the chain scission tendency. The presence of Ca and Fe pro‐oxidants additives in EVA films increased the ketone carbonyl formation and decreased the ester absorption band of the acetate respect to the pure EVA, as it was evidenced by the significant changes in Carbonyl Indexes found by FTIR. The activity of stearates has been also evaluated by chemiluminescence, where the temperature‐ramping tests under nitrogen showed the formation of a peroxide peak at lower temperature. The lower stability of the films containing pro‐oxidants was evidenced by the values of oxidation induction time (OIT) determined by DSC. The results were supported by GC‐MS, where the concentration of extracted products identified in the EVA containing pro‐oxidants was significant and a much greater decrease in molecular weight was determined by GPC, which confirmed the development of degradation for EVA with Ca and Fe stearates in comparison to pure EVA. Biodegradation of photodegraded EVA films were studied at 45°C during 90 days using a mixture of Bacillus (MIX) (B. cereus, B. megaterium, and B. subtilis) and, in parallel, by Brevibacillus borstelensis as reference strain. Biodegradation of EVA‐films was studied by Chemiluminescence, ATR‐FTIR and GC‐product analysis and the data confirm more efficient biodegradation on the materials containing pro‐oxidants. The chemiluminescence emissions due to decomposition of oxidation species was observed at lower temperatures on the biodegraded samples. Also, the drastic decrease of carbonyl index and the disappearance of photogenerated low molecular products with biodegradation were more efficient on the biodegraded films containing pro‐oxidants. EVA mineralization was evaluated by carbon dioxide measurement using indirect impedance technique. Biodegradation by B. borstelensis and MIX at 45°C was similar and exhibited a pronounced difference between the pure photodegraded EVA film (around 15% of mineralization) and the corresponding photodegraded films containing Ca and Fe stearates where biodegradation extent reached values of 23‐26% of biodegradation after 90 days. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
A new method to obtain hydroxylated poly(vinyl chloride) (PVC‐OH) and its crosslinking in the melt are studied. Starting from a vinyl chloride‐co‐vinyl acetate copolymer, a transesterification reaction in the presence of an alcohol during the processing of plasticized polymer is investigated as a function of the processing temperature and alcohol nature (1‐butanol or 1‐octanol). Reaction evolution is followed by 1H‐NMR and IR spectroscopies. The best results are obtained for 1‐octanol, and they show the absence of secondary reactions and the progressive appearance of OH groups in the polymer as acetate groups disappear. On the other hand, crosslinking of the thus‐obtained PVC‐OH with hexamethylene diisocyanate (HMDI) during the processing is also studied. The gel content and the mechanical properties at 140°C are studied as a function of three crosslinking variables: number of OH groups present in the polymer, concentration of HMDI added to the polymer, and time of crosslinking. The results show that by optimizing those parameters it is possible to obtain gel contents up to 100% and an increase of 600% in the Young's modulus and 1300% in the ultimate tensile strength with respect to the plasticized PVC. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 621–630, 1999  相似文献   

16.
Optical microscopy, differential scanning calorimetry, and small angle X‐ray scattering techniques were used to study the influence of the crystallization conditions on morphology and thermal behavior of samples of binary blends constituted of isotactic polypropylene (iPP) and a novel graft copolymer of unsaturated propylene with styrene (uPP‐g‐PS) isothermally crystallized from melt, at relatively low undercooling, in a range of crystallization temperatures of the iPP phase. It was shown that, irrespective of composition, no fall in the crystallinity index of the iPP phase was observed. Notwithstanding, spherulitic texture and thermal behavior of the iPP phase in the iPP/uPP‐g‐PS materials were strongly modified by the presence of copolymer. Surprisingly, iPP spherulites crystallized from the blends showed size and regularity higher than that exhibited by plain iPP spherulites. Moreover, the amount of amorphous material located in the interspherulitic amorphous regions decreased with increasing crystallization temperature, and for a given crystallization temperature, with increasing uPP‐g‐PS content. Also, relevant thermodynamic parameters, related to the crystallization process of the iPP phase from iPP/uPP‐g‐PS melts, were found, composition dependent. The equilibrium melting temperature and the surface free energy of folding of the iPP lamellar crystals grown in the presence of uPP‐g‐PS content up to 5% (wt/wt) were, in fact, respectively slightly lower and higher than that found for the lamellar crystals of plain iPP. By further increase of the copolymer content, both the equilibrium melting temperature and surface free energy of folding values were, on the contrary, depressed dramatically. The obtained results were accounted for by assuming that the iPP crystallization process from iPP/uPP‐g‐PS melts could occur through molecular fractionation inducing a combination of morphological and thermodynamic effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2286–2298, 2001  相似文献   

17.
Maleate‐denatured poly(vinyl alcohol) (M‐PVA) was crosslinked with heating. The mechanism of crosslinking was studied with several procedures: titration, Fourier transform infrared, and solubility. The carboxyl groups of M‐PVA consisted of carboxylates and a few free carboxyl groups. The crosslink was the ester linkage between hydroxyl and carboxyl groups. Several kinds of M‐PVA tablets were prepared under different conditions: pressures of 200–600 kgf/cm2 and grain sizes of 75 (pass) to 250 μm (on). The swelling behavior of these chemically crosslinked tablets was studied in a buffer solution of pH 7.4, mainly at 37°C. Moreover, the effect of temperature from 5 to 50°C and the effect of repeated swell–dry cycles on the behavior of the tablets in a buffer solution [106 μm (on), 200 kgf/cm2] were studied. The release of p‐acetamidophenol from those tablets in the pH 7.4 buffer solution was studied. The different release patterns were due to the differences in the swelling behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1178–1184, 2002; DOI 10.1002/app.10411  相似文献   

18.
The interfacial adhesion of blend of isotactic polypropylene/poly(vinyl methylether) (i‐PP/PVME) has been improved by the addition of poly(propylene‐g‐acrylic acid) (PP‐g‐AA) as a compatibilizing agent. The phase morphologies of the blends are investigated by optical microscopy (OM) and lateral force microscopy (LFM). The i‐PP/PVME (80/20) blend with no addition of PP‐g‐AA from extrusion process shows a coarse morphology with the dispersed domain size as large as several micrometers; After the addition of 2.5% PP‐g‐AA in the blends, the dispersed PVME domain size decreases greatly. The addition of 5% PP‐g‐AA results in a homogeneous morphology. The blending of PP‐g‐AA with PVME reduces the crystallization temperature of PP‐g‐AA, which is different from that of blending i‐PP with PVME. The increase of the interfacial adhesion is attributed to the specific intermolecular interaction between the acrylic acid group of PP‐g‐AA and the ether group of PVME. The specific interaction is studied by Fourier transform infrared spectroscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4098–4103, 2006  相似文献   

19.
The development of the morphology of polybutadiene/poly(2‐vinyl naphthalene) blends in five proportions by mass (5, 10, 50, 90, and 95%, w/w) is studied by epifluorescence and scanning electron microscopy (SEM) techniques. The phase separation process of these immiscible polymers produces a primary morphology that is formed by dispersed droplets in a continuous matrix. In the sequence a secondary phase separation inside the primary domains is detected by epifluorescence microscopy of the intrinsically fluorescent domains. Secondary phase separation is confirmed by SEM fracture surface analysis. The relative size of the droplets and the matrix composition depend on the proportion of the components of the blends. The mechanism of the phase separation process is preferentially by nucleation growth for either primary or secondary phase separation processes. Secondary relaxation processes involving the poly(2‐vinyl naphthalene) phase are studied by fluorescence spectroscopy. The profile of the steady‐state excimer fluorescence of poly(2‐vinyl naphthalene) with the temperature in the blend differs from that of the isolated homopolymer and is explained by the contribution from the interface to the radiationless deactivation. The Arrhenius plot for the temperature dependence exhibits slope changes that are related to the polymer relaxation processes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1637–1649, 2002; DOI 10.1002/app.10389  相似文献   

20.
A novel emulsion copolymer of vinyl acetate (VAc) and 1‐hexene was synthesized at ambient pressure. The feeding technique, initiation system and reaction time of the copolymerization were optimized based on molecular characteristics such as the weight contribution of 1‐hexene in the copolymer chains and glass transition temperature (Tg) as well as on bulk properties like minimum film‐formation temperature (MFFT) and solid content. According to nuclear magnetic resonance spectroscopy and differential scanning calorimetry results, the combination of starve feeding and redox initiation, within a reaction time of 4 h, effectively led to the copolymerization at ambient pressure between highly reactive polar VAc monomers and non‐polar 1‐hexene monomers of low reactivity. The copolymer showed a lower Tg and MFFT, and a reasonable solid content compared to the poly(vinyl acetate) (PVAc) homopolymer. The consumption rate, hydrolysis of acetate groups and chain transfer reactions during the polymerization were followed using infrared spectroscopy. Based on the results, the undesirable reactions between the VAc blocks were hindered by the neighbouring 1‐hexene molecules. Tensile testing revealed an improvement in the toughness and elongation at break of VAc–1‐hexene films compared to PVAc films. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号