首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The surface properties of films prepared from a blend of precipitated calcium carbonate pigment (PCC) and poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA); Tg = 0°C] latex were investigated in terms of the surface characteristics of the PCC and P(BMA/BA) latex particles. It was found that the presence of carboxyl groups on the P(BMA/BA) latex particles significantly improved the uniformity of the distribution of the PCC particles within the P(BMA/BA) copolymer matrix and the gloss of the resulting films. This phenomenon could be explained by an acid‐base reaction between the PCC particles and the carboxylated P(BMA/BA) latex particles. Studies on the influence of the composition of PCC/P(BMA/BA) latex blends on the gloss and transparency of the films were also performed, which led to the determination of the critical pigment volume concentration (CPVC) of this system, which was found to be 42 vol %. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 891–900, 2002  相似文献   

2.
The mechanical and surface properties of films prepared from model latex/pigment blends were studied using tensile tests, surface gloss measurements, and atomic force microscopy. Functionalized poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA)] and ground calcium carbonate (GCC) were used as latex and extender pigment particles, respectively. The critical pigment volume concentration of this pigment/latex blend system was found to be between 50 and 60 vol % as determined by surface gloss measurement and tensile testing of the blend films. As the pigment volume concentration increased in the blends, the Young's modulus of the films increased. Nielsen's equations were found to fit the experimental data very well. When the surface coverage of carboxyl groups on the latex particles was increased, the yield strength and Young's modulus of the films both increased, indicating better adhesion at the interfaces between the GCC and latex particles. When the carboxyl groups were neutralized during the film formation process, regions with reduced chain mobility were formed. These regions acted as a filler to improve the modulus of the copolymer matrix and the modulus of the resulting films. The carboxyl groups on the latex particle surfaces increased the surface smoothness of the films as determined by surface gloss measurement. When the initial stabilizer coverage of the latex particles was increased, the mechanical strength of the resulting films increased. At the same time, rougher film surfaces also were observed because of the migration of the stabilizer to the surface during film formation. With smaller‐sized latex particles, the pigment/latex blends had higher yield strength and Young's modulus. Higher film formation temperatures strengthen the resulting films and also influence their surface morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4550–4560, 2006  相似文献   

3.
The adsorption of sodium polyacrylate [NaPA] on noncarboxylated and carboxylated poly(n‐butyl methacrylate‐con‐butyl acrylate) [P(BMA/BA)] latexes and ground calcium carbonate (GCC) was studied. The adsorption isotherms of NaPA on P(BMA/BA) latex surfaces showed that NaPA tended to adsorb to a greater extent onto the latex particle surfaces when the carboxyl group surface coverage of latex polymer particles is low, which indicates a repulsive interaction between the dissociated carboxyl groups and NaPA macroions. The electrophoretic mobility of cleaned model P(BMA/BA) latexes decreased with the increasing carboxyl group surface coverage at pH 10 due to the alkali‐swelling characteristics of carboxylated latexes. For GCC, used as extender pigment particles in the pigmented latex blend systems, the size of the GCC pigment particles stabilized with NaPA decreased during a sonification process and their ζ‐potential became increasingly negative with the addition of NaPA to the GCC pigment slurry. Particle size and ζ‐potential measurements showed that NaPA can stabilize GCC particles effectively, and the optimum concentration of NaPA to stabilize GCC is around 1 wt % based on solid GCC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 398–404, 2006  相似文献   

4.
The drying kinetics and bulk morphology of pigmented latex films obtained from poly(n‐butyl methacrylate‐con‐butyl acrylate) latex particles functionalized with carboxyl groups and ground calcium carbonate blends were studied. Latex/pigment blends with higher carboxyl group coverage on the latex particle surfaces dried faster than films with few or no carboxyl groups present. The latex/pigment dispersions also dried faster when there was more stabilizer present in the blend system because of the hydrophilic nature of the stabilizer. The net effect of increasing the pigment volume concentration in the blend system was to shorten the drying time. The bulk morphologies of the freeze‐fractured surfaces of the pigmented latex films were studied with scanning electron microscopy. Scanning electron microscopy analysis showed that increased surface coverage of carboxyl groups on the latex particles in the latex/pigment blends resulted in the formation of smaller pigment aggregates with a more uniform size distribution in the blend films. In addition, the use of smaller latex particles in the blends reduced the ground calcium carbonate pigment aggregate size in the resulting films. Scanning electron microscopy analysis also showed that when the initial stabilizer coverage on the latex particles was equal to 18%, smaller aggregates of ground calcium carbonate were distributed within the copolymer matrix of the blend films in comparison with the cases for which the initial stabilizer coverage on the latex particles was 8 or 36%. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2267–2277, 2006  相似文献   

5.
The mechanical and thermal properties of films from a series of two-stage emulsion polymers were investigated. The emulsion polymers were made by polymerizng styrene in the presence of a preformed poly(butyl acrylate-co-divinyl benzene) seed latex. The effects of seed particle size, seed particle crosslinking via the amount of divinyl benzene, styrene/butyl acrylate ratio, and thermal history on the film properties were studied. Latex particles were characterized by light scattering and film formation behavior. Dried films were characterized by differential scanning calorimetry, dynamic mechanical analysis, and stress-strain behavior. Although evidence was obtained for nearly complete phase separation between the polystyrene (PS) and poly(butyl acrylate) (PBA) phases, the site of styrene polymerization and thus the PS phase morphology is influenced by seed particle size, seed crosslinking, and S/BA ratio. The morphology of as-dried films consists of finely dispersed PS domains in a continuous PBA matrix. Thermal annealing above the PS Tg causes coalescence of the PS domains, resulting in significantly improved mechanical properties. The extent of PS phase coalescence is also influenced by the level of seed crosslinking.  相似文献   

6.
We have employed steady sate fluorescence (SSF) and UV‐visible (UVV) techniques to determine the film formation behavior of latex blends. Blend films were prepared from mixtures of a high‐Tg pyrene (P) labeled polystyrene (PS) latex and a low‐Tg copolymer of poly(butyl acrylate‐co‐methyl methacrylate) (BuA/MMA4). Eleven different blend films were prepared in various hard/soft latex compositions at room temperature and annealed at elevated temperatures above glass‐transition (Tg) temperature of polystyerene for 10 min. Fluorescence intensity (IP) from P was measured after each annealing step to monitor the stages of film formation. The evolution of transparency of latex films was monitored using photon transmission intensity, Itr. Film morphologies were examined by atomic force microscopy (AFM). A significant change occurs in both IP and Itr intensities at a certain critical weight fraction of hard latex (Rc = 0.3). Above Rc, two distinct film formation stages, which are named as void closure and interdiffusion processes, were seen in fluorescence data. Transparency of the films was decreased with decreasing PS content, indicating that a phase separation process occurs between PS and BuA/MMA4 phases by thermal treatment, which results in turbid films. However, below Rc, no change was observed in IP and Itr upon annealing, whereas transparency increased overall with increasing BuA/MMA4 ratio. We explained this result as the phase separation process between PS and BuA/MMA4 blends. These results were also confirmed by AFM pictures. Film formation stages above Rc were modeled and related activation energies were calculated. POLYM. COMPOS., 27:431–442, 2006. © 2006 Society of Plastics Engineers  相似文献   

7.
In this article, silica sol (diameter: 8–100 nm) and polymer latex (Tg < 25°C) were mixed and dried at room temperature to prepare nanocomposite films with high silica load (≥50 wt %). Effects of silica size, silica load, and the Tg of the polymer on the film‐forming behavior of the silica/polymer latex blend were investigated. The transparency, morphology, and mechanical properties of the nanocomposite films were examined by UV–Vis spectroscopy, SEM, and nanoindentation tests, respectively. Transparent and crack‐free films were produced with silica loads as high as 70 wt %. Thirty nanometers was found to be the critical silica size for the evolution of film‐forming behavior, surface morphology, and mechanical properties. Colloidal silica particles smaller than this critical size act as binders to form strong silica skeleton. This gives the final silica/polymer nanocomposite film its porous surface and high mechanical strength. However, silica particles with sizes of 30 nm or larger tend to work as nanofillers rather than binders, causing poor mechanical strength. We also determined the critical silica load appeared for the mechanical strength of silica/polymer film at high silica load. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Different poly(methyl methacrylate/n‐butyl acrylate)/poly(n‐butyl acrylate/methyl methacrylate) [P(BA/MMA)/P(MMA/BA)] and poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(BA/MMA)/PSt] core‐shell structured latexes were prepared by emulsifier‐free emulsion polymerization in the presence of hydrophilic monomer 3‐allyloxy‐2‐hydroxyl‐propanesulfonic salt (AHPS). The particle morphologies of the final latexes and dynamic mechanical properties of the copolymers from final latexes were investigated in detail. With the addition of AHPS, a latex of stable and high‐solid content (60 wt %) was prepared. The diameters of the latex particles are ~0.26 μm for the P(BA/MMA)/P(MMA/BA) system and 0.22–0.24 μm for the P(BA/MMA)/PSt system. All copolymers from the final latexes are two‐phase structure polymers, shown as two glass transition temperatures (Tgs) on dynamic mechanical analysis spectra. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3078–3084, 2002  相似文献   

9.
Core–shell structured particles, which comprise the rubbery core and glassy layers, were prepared by emulsifier‐free emulsion polymerization of poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(n‐BA/MMA)/PS]. The particle diameter was about 0.22 μm, and the rubbery core was uncrosslinked and lightly crosslinked, respectively. The smaller core–shell structured particle–toughened PS blends were investigated in detail. The dynamic mechanical behavior and observation by scanning electron microscopy of the modified blend system with core–shell structured particles indicated good compatibility between PS and the particles, which is the necessary qualification for an effective toughening modifier. Notched‐impact strength and related mechanical properties were measured for further evaluation of the toughening efficiency. The notched‐impact strength of the toughened PS blends with uncrosslinked particles reached almost sixfold higher than that of the untoughened PS when 15 phr of the core–shell structured particles was added. For the crosslinked particles the toughening effect for PS was not obvious. The toughening mechanism for these smaller particles also is discussed in this article. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1290–1297, 2003  相似文献   

10.
Novel polyacrylonitrile (PAN)‐co‐poly(hydroxyethyl acrylate) (PHEA) copolymers at three different compositions (8, 12, and 16 mol % PHEA) and their homopolymers were synthesized systematically by emulsion polymerization. Their chemical structures and compositions were elucidated by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy. Intrinsic viscosity measurements revealed that the molecular weights of the copolymers were quite enough to form ductile films. The influence of the molar fraction of hydroxyethyl acrylate on the glass‐transition temperature (Tg) and mechanical properties was demonstrated by differential scanning calorimetry and tensile test results, respectively. Additionally, thermogravimetric analysis of copolymers was performed to investigate the degradation mechanism. The swelling behaviors and densities of the free‐standing copolymer films were also evaluated. This study showed that one can tailor the hydrogel properties, mechanical properties, and Tg's of copolymers by changing the monomer feed ratios. On the basis of our findings, PAN‐co‐PHEA copolymer films could be useful for various biomaterial applications requiring good mechanical properties, such as ophthalmic and tissue engineering and also drug and hormone delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Blends of polystyrene (PSt) hard particle latex with three different particle sizes (96, 72, and 61 nm) and a n‐butyl acrylate‐co‐styrene (BA‐co‐St) copolymer soft latex with a 204 nm particle size were synthesized by emulsion polymerization. Latexes were standardized at 25% solids and blended at different concentrations by wt% of PSt:BA‐co‐St for every hard particle size. Finally, films from each blend were obtained. Morphology of each film prepared was examined by transmission electron microscopy, and it was found that the hard particles are randomly distributed in the films inside the copolymer matrix. The effect on mechanical properties of different PSt concentrations and particle sizes was assessed by DMA as a function of temperature. The results indicate that rigidity of the blended latex increases as the particle size diminishes as determined by the reduction in damping in the tan δ peak. The storage modulus increases as the concentration of PSt increases in the blends and the values depend upon the size of PSt particles. Mechanical properties at tension indicate that decreasing the size of the PSt particles and increasing their concentration increase the Young's modulus and ultimate strength at tension because of an increase in the rigidity of the films. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

12.
The core‐shell fluorine‐containing polyacrylate latex was successfully synthesized by two‐stage semicontinuous emulsion copolymerization of methyl methacrylate (MMA), butylacrylate (BA), acrylic acid (AA), and dodecafluoroheptyl methacrylate (DFMA). The fluorine‐containing polyacrylate latex was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC). The effects of AA content on monomer conversion, polymerization stability, particle size, corsslinking degree, carboxyl groups distributions (latex surface, aqueous phase or buried in latex), as well as mechanical properties and water absorption rate of latex film were investigated. The obtained fluorine‐containing polyacrylate latex exhibited core‐shell structure with a particle size of 120–150 nm. The introduction of AA was beneficial for the increase of monomer conversion and the polymerization stability, and had little effects on the mechanical property of latex film. However, the hydrophilicity of AA made the water resistance of latex film get bad. With the increase of AA content, the carboxyl groups preferred to distribute on aqueous phase, and the possibility of homogeneous nucleation increased and more oligomers particles were formed. Moreover, the oligomers would distribute to the latex and continued to grow up, making the latex morphology changed from spherical to plum blossom‐like. The core‐shell latex had two Tg corresponding to the rubber polyacrylate core and hard fluorine‐containing polyacrylate shell, and the latex film possessed excellent thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42527.  相似文献   

13.
This work reports steady state fluorescence (SSF) technique for studying film formation from pyrene (P)‐labeled nano‐sized polystyrene (PS) and poly(n‐butyl acrylate) (PBA) hard/soft latex blends. Blend films were prepared from mixtures of PS and PBA in dispersion. Eight different blend films were prepared in various hard/soft latex compositions at room temperature and annealed at elevated temperatures above glass transition temperature (Tg) of polystyerene. Monomer (IP) and excimer (IE) intensities from P was measured after each annealing step to monitor the stages of film formation. The evolution of transparency of latex films was monitored using photon transmission intensity, Itr. Film morphologies were examined by atomic force microscopy (AFM). The results showed that as the amount of hard component (PS) in the blend is decreased, a significant change occurred in both IE/IP and Itr curves at a certain critical weight fraction (50 wt%) of PS hard latex. Two distinct film formation stages, which are named as void closure and interdiffusion were seen in (IE/IP) data above this fraction. However, below 50 wt% PS no film formation was observed. AFM pictures also confirmed these findings. Void closure and interdiffusion stages for (50–100) wt% range of PS were modeled and related activation energies were determined. There was no observable change in activation energies confirming that film formation behavior is not affected by varying the blend composition in this range. POLYM. COMPOS., 31:1611–1619, 2010. © 2009 Society of Plastics Engineers  相似文献   

14.
3‐Allyloxy‐2‐hydroxyl‐propanesulfonic (AHPS) salt was synthesized and used as a hydrophilic comonomer for the methyl methacrylate (MMA) and n‐butyl acrylate (BA) emulsifier‐free emulsion copolymerization system to obtain latices of stable and high‐solid content. Properties of the latices, such as flow behavior, stability, and final diameter of the latex particles were studied. In addition, physical properties of the obtained copolymers, such as glass transition temperature (Tg), stress–strain behavior, and water resistance were investigated. With the addition of AHPS, the latices of stable and high‐solid content (as high as 60%) were prepared. Flow of the latices follows the law of the Bingham body. The final diameter of the latex particles is 0.3–0.5 μm in diameter, which is larger than that of the conventional latex particles and decreases with the increase of AHPS and potassium persulfate (KPS) concentration. All the copolymers are atactic polymers, showed as single Tg on dynamic mechanical analysis spectrum. Compared with the copolymers that were prepared by surfactant emulsion polymerization, tensile strength, as well as water resistance is greatly improved. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 21–28, 2001  相似文献   

15.
Monodispersed crosslinked cationic poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] seed latexes were prepared by soapless emulsion polymerization, using 2,2′‐azobismethyl(propionamidine)dihydrochloride (V50) as an initiator and divinylbenzene (DVB) or ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The optimum condition to obtain monodispersed stable latex was investigated. It was found that the colloidal stability of the P4VP latex can be improved by adding an adequate amount of BA (BA/4VP = 1/4, w/w), and adopting a semicontinuous monomer feed mode. Subsequently, poly(4‐vinylpyridine‐co‐butyl acrylate)/Poly(styrene‐co‐butyl acrylate) [P(4VP‐BA)/P(ST‐BA)] composite microspheres were synthesized by seeded polymerization, using the above latex as a seed and a mixture of ST and BA as the second‐stage monomers. The effects of the type of crosslinker, the degree of crosslinking, and the initiators (AIBN and V50) on the morphology of final composite particles are discussed in detail. It was found that P(4VP‐BA)/P(ST‐BA) composite microspheres were always surrounded by a PST‐rich shell when V50 was used as initiator, while sandwich‐like or popcorn‐like composite particles were produced when AIBN was employed. This is because the polarity of the polymer chains with AIBN fragments is lower than for the polymer with V50 fragments, hence leading to higher interfacial tension between the second‐stage PST‐rich polymer and the aqueous phase, and between PST‐rich polymer and P4VP‐rich seed polymer. As a result, the seed cannot be engulfed by the PST‐rich polymer. Furthermore, the decrease of Tg of the second‐stage polymer promoted phase separation between the seeds and the PST‐rich polymer: sandwich‐like particles formed more preferably than popcorn‐like particles. It is important knowledge that various morphologies different from PST‐rich core/P4VP‐rich shell morphology, can be obtained only by changing the initiator, considering P4VP is much more hydrophilic than PST. The zeta potential of composite particles initiated by AIBN in seeded polymerization shifted from a positive to a negative charge. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1190–1203, 2002  相似文献   

16.
BA‐MMA‐POMA copolymer latex was successfully prepared by soap‐free emulsion polymerization of 2‐(perfluoro‐(1,1‐bisisopropyl)‐2‐propenyl)oxyethyl methacrylate(POMA) with butyl acrylate(BA), methyl methacrylate (MMA) initiated by K2S2O8 in the water. POMA was synthesized from the intermediate perfluoro nonene and 2‐hydroxyethyl methacrylate as the staring reactants. The structure of BA‐MMA‐POMA copolymer latex was investigated by Fourier transform infrared (FTIR). The characteristics of the film such as hydrophobicity and glass transition temperature were characterized with the contact angle and differential scanning calorimetry respectively. The influences of the amount of the fluorinated monomer and the initiator on the soap‐free emulsion polymerization and performance of the latex were studied. In addition, comparison with the latex prepared by the conventional emulsifier SDBS is investigated. Results show that the hydrophobicity and glass transition temperature (Tg) of the latex are increased when the fluorinated monomer is introduced to copolymerize with other monomers. The hydrophobicity can be improved further with heating. Compared with the latices prepared by using SDBS emulsifier, the latices prepared by using HMPS emulsifier have larger particle size, higher surface tension. However, the difference of their Tg is extremely minute. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
This study investigated the chemical behavior of polymers bearing cycloaliphatic bornyl units along with the steric difference of the chiral (+)‐bornyl methacrylate [(+)‐BMA] and racemic (±)‐BMA, expressed in the physical properties of the copolymers and the resist characteristics. To do this, a series of copolymers containing (+)‐bornyl methacrylate [(+)‐BMA] and (±)‐BMA] units was synthesized. Comonomers of tert‐butyl methacrylate (TBMA), methyl methacrylate (MMA), and maleic anhydride (MA) were used. The thermogravimetric curves, glass‐transition temperature (Tg), and molecular weight (MW) of the copolymers were evaluated. Exposure characteristics of chemical‐amplified positive photoresists comprising various copolymers were investigated. It was found that copolymers bearing (±)‐BMA have higher Tg and better thermostability than those of copolymers containing (+)‐BMA units. The copolymers with (±)‐BMA units, however, revealed an inert photochemical behavior on the positive‐tone photoresist. The patterning properties of the positive photoresist, composed of copolymers bearing (+)‐BMA and (±)‐BMA, and the photoacid generator (PAG) were also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3538–3544, 2001  相似文献   

18.
Poly(n‐butyl methacylate‐co‐n‐butyl acylate) [P(BMA/BA)] soft latexes (carboxylated and noncarboxylated) were synthesized using a semicontinuous emulsion polymerization process that was designed on the basis of a theoretical calculation to determine the suitable surfactant [i.e., sodium dodecyl sulfate (SDS)], monomer, and water feed rates to maintain a constant particle number throughout the polymerization (guaranteeing monodispersity in the particle size), to obtain a homogeneous copolymer composition, and to independently control the particle size and carboxyl group concentration. The experimental results support the theoretical calculation. The surface coverage of the carboxyl groups present on the soft latex particles ranges from 7.6 to 21.9% for a series of latexes with particle sizes around 120 nm. In another series of latexes, the particle size was varied over a range from 120 to 450 nm. Monodisperse carboxylated polystyrene hard latexes were synthesized by shot growth (batch) and semicontinuous processes. The shot growth method is somewhat inflexible in providing more choices in surfactant, particle size, and surface carboxyl coverage. A semicontinuous process designed using a similar method used for the synthesis of P(BMA/BA) latexes successfully eliminated the drawbacks of the shot growth process. In this way, the changes in the surface carboxyl coverage (varies from 0 to 77.2%) was independent of the particle size, which was precisely controlled by the amount of styrene fed under suitable styrene and SDS feed rates. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 644–659, 2000  相似文献   

19.
Self‐healing paints would have the potential benefit of protecting the underlying substrate and extending the coating's service life. As a step toward those types of coatings, this work examines layer‐by‐layer films of branched poly(ethylene imine)/poly(acrylic acid) with the inclusion of various types of latex particles with different Tg and different compositions. Due to high mobility of the polyelectrolyte chains when plasticized with water, water enabled self‐healing of these films is demonstrated, as well as steam enabled self‐healing. The films with various latex particles show different swelling ratios, surface hydrophilicity, as well as varying ability to self‐heal scratches. This self‐healing property is studied as a function of temperature. Also, the mechanical properties such as hardness and modulus of the films are measured.  相似文献   

20.
A core–shell nanosilica (nano‐SiO2)/fluorinated acrylic copolymer latex, where nano‐SiO2 served as the core and a copolymer of butyl acrylate, methyl methacrylate, and 2,2,2‐trifluoroethyl methacrylate (TFEMA) served as the shell, was synthesized in this study by seed emulsion polymerization. The compatibility between the core and shell was enhanced by the introduction of vinyl trimethoxysilane on the surface of nano‐SiO2. The morphology and particle size of the nano‐SiO2/poly(methyl methacrylate–butyl acrylate–2,2,2‐trifluoroethyl methacrylate) [P(MMA–BA–TFEMA)] core–shell latex were characterized by transmission electron microscopy. The properties and surface energy of films formed by the nano‐SiO2/P(MMA–BA–TFEMA) latex were analyzed by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, and static contact angle measurement. The analyzed results indicate that the nano‐SiO2/P(MMA–BA–TFEMA) latex presented uniform spherical core–shell particles about 45 nm in diameter. Favorable characteristics in the latex film and the lowest surface energy were obtained with 30 wt % TFEMA; this was due to the optimal migration of fluorine to the surface during film formation. The mechanical properties of the films were significantly improved by 1.0–1.5 wt % modified nano‐SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号