首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
This research used the ceric ion to initiate the graft‐polymerization of vinyl acetate (VAc) to a soluble potato starch. Fourier transform infrared spectra confirmed the formation of starch graft copolymer. After 4 h of reaction at 50°C, total monomer conversion, grafting efficiency, and grafting ratio were measured as 91%, 12.5%, and 0.223, respectively. The synthesized PVAc‐modified starch was then blended with poly(3‐hydroxybutyrate) (PHB). Structures, thermal and mechanical properties of the prepared blends were examined. The results showed the PHB and PVAc‐modified starch were miscible in all compositions. In addition, thermal gravimetric analysis revealed that the addition of PVAc‐modified starch increased the thermal stability of the PHB component. Further evidence also showed that the addition of PVAc‐modified starch reduced the extent of decrease in molecular weight of PHB in a melt‐mixer. PHB/PVAc‐modified starch blends exhibit higher toughness than pure PHB because of increased compatibility and the leathery PVAc‐modified starch. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Binary blends formed by two types of ethylene‐co‐vinyl acetate (EVA), which have different vinyl acetate contents, and poly(vinyl acetate) (PVAc) were prepared in a Haake Rheocord 9000 plastograph. A series of samples were obtained varying the PVAc amount up to 50%. The studies were carried out employing solid‐state nuclear magnetic resonance spectroscopy (NMR) and scanning electronic microscopy (SEM). The xenon‐129 (129Xe) and carbon‐13 (13C) NMR response together with the microscopy results showed that the systems are heterogeneous. Therefore, EVA with a higher vinyl acetate content presented some interaction between the polymer blend components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 116–124, 2002  相似文献   

4.
To obtain a correlation among structure–morphology–mobility–compatibility properties of poly(ethylene‐co‐vinyl acetate) (EVA)/poly(vinyl acetate) (PVAc) blends, we have used scanning electron microscopy and solid‐state nuclear magnetic resonance in our investigations. The results are discussed in terms of blends, component dispersion, plasticization effect, and domain mobilities to acquire a response of the correlation between structural properties. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2990–2996, 1999  相似文献   

5.
Graft copolymers of chitosan and vinyl acetate were synthesized by free radical technique using cerium (IV) as the initiator. Under controlled conditions, as much as 92% grafting with a grafting yield of 30–40% could be achieved. Chitosan‐g‐poly(vinyl alcohol) copolymers were derived by the alkaline hydrolysis of the chitosan‐g‐poly(vinyl acetate) precursor. Thermogravimetric, FTIR, and X‐ray diffraction analyses of chitosan and the copolymers confirmed the grafting reaction between chitosan and vinyl acetate and also the subsequent hydrolysis. Both the copolymers possessed very good film‐forming properties. Grafting resulted in a significant increase in mechanical strength of both the copolymers in the dry condition. Chitosan‐g‐poly(vinyl acetate) (CH‐PVAc) proved more hydrophobic than did pure chitosan, whereas chitosan‐g‐poly(vinyl alcohol) (CH‐PVOH) exhibited enhanced hydrophilicity as evident from their swelling characteristics and contact angle measurements. The enhanced swelling of CH‐PVOH was ascribed to the presence of the pendant poly(vinyl alcohol) group. At pH 1.98, the CH‐PVAc copolymer films showed greater stability than do pure chitosan films, which is highly beneficial for specific biomedical applications. Both the copolymers showed lower glass transition temperature than do pure chitosan. Grafting did not affect the overall thermal stability, and the differential thermogram substantiated the grafting. The investigations indicate that the synthetic–natural hybrid copolymers having desirable mechanical properties and tailored hydrophilic/hydrophobic characteristics are realizable. These polymers could be exploited for varied biomedical applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1852–1859, 2007  相似文献   

6.
Summary The compatibility of nylon 6 with poly(vinyl acetate)(PVAc) and poly(vinyl alcohol)(PVA) was investigated in terms of the melting-temperature depression. In order to vary the compatibility systematically, a hydroxylated poly(vinyl actate)(m-PVAc) was prepared by hydrolyzing PVAc with KOH in CH3OH. It was found that the compatibility with nylon 6 is better in the systematic order PVA> m-PVAc> PVAc.  相似文献   

7.
Crosslinking and decrosslinking reactions of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) using an alternating copolymer of maleic anhydride and 2,4‐dimethyl‐1,3‐pentadiene (PMAD) as the polyfunctional crosslinker and subsequent ozone degradation are reported. PVA and PVAc are heated at 200 °C for 0.5 to 3 h in the presence of 5 to 30 wt % of PMAD in the solid state to obtain the corresponding crosslinked polymers. The reactions of a hydroxy group of PVA and an acetate group of PVAc with an anhydride group of PMAD slowly proceed to give insoluble polymers with a loose crosslinking structure. Almost no change in the thermal decomposition temperatures and the IR spectra is observed during the crosslinking reactions. The crosslinked PVA produces hydrogels with a high swelling ratio of 500 to 1700%, which are readily degradable during a reaction with ozone in water at 0 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44229.  相似文献   

8.
Molecular weight distributions, long chain branching frequency, and solution viscosities of samples of commercial poly(vinyl alcohol) (PVA) are reported. The PVA was fully reacetylated to poly(vinyl acetate) (PVAc) for characterizations by size exclusion chromatography using a low angle light scattering detector. The Mark–Houwink constants for PVAc in toluene were determined to be K = 0.106 cm3 g?1 and α = 0.59, at 25°C. Long chain branching frequency in the commercial PVAs studied was small and was little affected by polymer molecular weight. Some 95% or more of the branches in these species were short. Aqueous solutions at 10% (w/v) of PVA were Newtonian. The polymers examined differed in chemical composition, molecular weight distributions, and mean block lengths of vinyl acetate residues. Variations in a single characteristic, like a solution or intrinsic viscosity, cannot be used to deduce structural differences between PVAs.  相似文献   

9.
The thermal, dynamic mechanical, and mechanical properties and morphology of two series of semi‐interpenetrating polymer networks (s‐IPNs) based on linear poly(vinyl acetate) (PVAc) and a crosslinked n‐butyl acrylate/1,6‐hexanediol diacrylate copolymer were investigated. The s‐IPN composition was varied with different monoacrylate/diacrylate monomer ratios and PVAc concentrations. The crosslinking density deeply affected the thermal behavior. The results showed that a more densely crosslinked acrylate network promoted phase mixing and a more homogeneous structure. The variation in the linear polymer concentration influenced both the morphology and mechanical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Poly(vinyl acetate)–TEMPO (PVAc–TEMPO) macroinitiators were synthesized by bulk polymerization of vinyl acetate in the presence of benzoyl peroxide (BPO) followed by termination with 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO). Radicals were mainly transferred to the acetoxy methyl groups in PVAc during the polymerization. The PVAc–TEMPO macroinitiators had several TEMPO‐dormant sites and styrene bulk polymerization with the macroinitiators produced poly(vinyl acetate)‐graft‐polystyrene (PVAc‐g‐PS). All the TEMPO‐dormant sites of PVAc–TEMPO macroinitiators participated in the styrene polymerization with almost equal reactivity. Methanolysis of PVAc‐g‐PS broke the PS branches apart from the PVAc backbone chains. Hydrophobic or hydrophilic porous membranes with controlled pore size could be prepared by removing the PVAc domains or the PS domains from the graft copolymer. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1658–1667, 2001  相似文献   

11.
Transarterial vascular embolization and chemoembolization has become common medical procedures, where partially hydrolyzed poly(vinyl alcohol) (PVA) beads remains as one of the most used embolic agent materials. Although synthetic, PVA cannot be synthesized by direct polymerization and must be obtained by chemical modification of another polymer, usually poly(vinyl acetate) (PVAc). The aim of the present work is to synthesize spherical core‐shell PVAc/PVA particles and study the morphological and molecular modifications during shell formation. The polymer particles where produced in two stages, where first the PVAc core was obtained by suspension polymerization of vinyl acetate (VAc) and then the PVA shell synthesized through hydrolysis. Spherical PVAc particles were successfully produced and isolated using an optimized suspension polymerization process. During the shell formation, it was shown that none of the conditions used affected the overall morphology of the particles although changes in the final size distribution could be observed. However, it was possible to identify the process variables and reaction condition that affect the molecular weight averages and polydispersities of the final copolymer. POLYM. ENG. SCI., 55:2237–2244, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
The compatibility of low‐density polyethylene and poly(ethylene‐co‐vinyl acetate) containing 18 wt % vinyl acetate units (EVA‐18) was studied. For this purpose, a series of different blends containing 25, 50, or 75 wt % EVA‐18 were prepared by melt mixing with a single‐screw extruder. For each composition, three different sets of blends were prepared, which corresponded to the three different temperatures used in the metering section and the die of the extruder (140, 160, and 180°C), at a screw rotation speed of 42 rpm. Blends that contained 25 wt % EVA‐18 were also prepared through mixing at 140, 160, or 180°C but at a screw speed of 69 rpm. A study of the blends by differential scanning calorimetry showed that all the prepared blends were heterogeneous, except that containing 75 wt % EVA‐18 and prepared at 180°C. However, because of the high interfacial adhesion, a fine dispersion of the minor component in the polymer matrix was observed for all the studied blends with scanning electron microscopy. The tensile strengths and elongations at break of the blends lay between the corresponding values of the two polymers. The absence of any minimum in the mechanical properties was strong evidence that the two polymers were compatible over the whole range of composition. The thermal shrinkage of the blends at various temperatures depended mainly on the temperature and EVA‐18 content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 841–852, 2003  相似文献   

13.
Poly(vinyl alcohol) (PVA) was chosen as a controllable gelator to prepare sodium alginate (SA)‐based physically cross‐linked dual‐responsive hydrogel by three steps. First, polyvinyl acetate (PVAc) was grafted onto SA via radical copolymerization. Then, the copolymer was subsequently converted into SA‐g‐poly(vinyl alcohol) (SAPVA) by alcoholysis reaction. PVA content of SAPVA was tailored by controlling the graft percentage of PVAc, i.e. through varying the amount of vinyl acetate during copolymerization. Finally, SAPVA hydrogels were formed by freezing‐thawing cycles. The structure of the graft copolymers was verified with FTIR spectroscopy. X‐ray diffraction analysis results revealed that the crystallinity of SAPVA hydrogels depended on the PVA content of SAPVA. The swelling test showed that SAPVA hydrogels were pH‐responsive, and the swelling was reversible. SAPVA hydrogels also behaved electric‐responsive. In addition, the pH‐sensitivity of SAPVA hydrogels was able to be controlled with the composition of the hydrogels. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Blends of poly(ethylene ortho-phthalate) (PEOP), and poly(vinyl acetate) (PVAc), appear to be compatible at all compositions, from visual examination at room temperature and differential scanning calorimetry tests. Both low- (PEOP-1) and high-molecular weight (PEOP-2) alloys with PVAc show a single composition-dependent glass transition temperature (Tg). Some blends show Tg values that are below the Tg for either of the pure polymers. Couchman's equation, with a slight modification, can be used to model Tg behavior. All PEOP-2 blends with PVAc, phase separate at high temperatures, whereas PEOP-1–PVAc blends remain miscible under the same conditions. The composition dependence of the blends refractive index shows a deviation from simple additivity rules, and a similar trend is observed in density measurements. When comparing Flory's characteristic parameters for the polymers, compatibility is predicted for PVAc–PEOP blends. In contrast, blends of PEOP and poly(methyl methacrylate) (PMMA), which has a similar chemical structure to that of PVAc are predicted to be incompatible, in agreement with experimental evidence. It is suggested that compatibility is produced because of possible specific interactions between the aromatic group of PEOP and the ester carbonyl on PVAc, which is not sterically hindered as is the corresponding moiety on PMMA.  相似文献   

15.
The specific retention volumes of nine hydrocarbons and 12 alcohols were measured at several temperatures within the range 120–150°C in columns whose stationary phases were poly(vinyl acetate) (PVAc) and four copolymers of vinyl acetate and vinyl alcohol with 94.8, 74.4, 60.9, and 43.4 mol % of vinyl acetate units (mol % VAc). No chromatographic retention for hydrocarbons was detected in columns loaded with poly(vinyl alcohol) (PVA) or a copolymer with 11.9 mol % VAc. The retention trends are discussed and the polymers solubility parameters (δ2) were computed from the measured Flory–Huggins χ parameters. The copolymers δ2 values increase almost linearly with decreasing mol % VAc; PVAc, however, has a distinct behavior. The limitations of the approach in the prediction of χ parameters are discussed.  相似文献   

16.
Two types of maleic acid diesters, dibutyl maleate (DBM) and dioctyl maleate (DOM) were used as comonomers in semicontinuous emulsion copolymerization of vinyl acetate (VAc) in order to improve the film properties of poly(vinyl acetate), PVAc emulsion polymer. The effects of the comonomer type and comonomer ratio on minimum film forming temperature (MFFT), glass transition temperature (Tg), polymer structure, molecular weights, water contact angle and water resistance of PVAc latex films were examined. It was found that MFFT and Tg of the PVAc emulsion polymer decreased by the presence of the maleic acid disters in copolymer composition. This decrease was more affected by the increasing content and alkyl chain length of the comonomers. The molecular weights of the emulsion polymers were also affected by the comonomers and their ratios. Moreover, hydrophobicity and water resistance of the PVAc latex films were increased by using DBM and DOM as comonomer.  相似文献   

17.
In this study, we conveniently obtained Ag(0)–polymer nanocomposites by reacting AgNO3 with commercial poly(vinyl acetate) (PVAc) in the absence of a special reducing agent. The formation of Ag(0) metal was detected after formic acid (HCOOH) was added to a PVAc–AgNO3 complex system, and some of the acetate groups of the PVAc backbone were hydrolyzed to form hydroxyl groups (OH) under the catalytic effect of the reduced Ag(O) metal. Here, the structure of the partially hydrolyzed PVAc backbone was represented as PVOH‐PVAc. X‐ray diffraction spectra showed that the Ag(0) metal generated in this method was in the form of Ag crystals. The structure of the Ag(0)–polymer was analyzed by 1H‐NMR and 13C‐NMR spectroscopy. The micellization of the Ag(0)–polymer was also investigated by the addition of an inducing solvent to the formic acid solution of Ag(0)–polymer. The image showed that the morphology of the Ag micelles in the H2O‐induced solvent was a Ag corona with a Ag shell, and that in the p‐xylene induced solvent showed a Ag cluster core structure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1457–1464, 2006  相似文献   

18.
An extended and generalized Flory–Huggins model for calculating the heats of mixing and predicting the phase stability and spinodal diagrams of binary polymer–polymer mixtures is presented. In this model, the interaction parameter is considered to be a function of both temperature and composition. It is qualitatively shown that the proposed model can calculate the heats‐of‐mixing curves containing exothermic, endothermic, and S‐shaped or sigmoidal types and predict the spinodals, including the upper and lower critical solution temperatures, and closed‐loop miscibility regions. Using experimental results of analog calorimetry for four polymer mixtures of polystyrene/poly(vinyl chloride) (PS/PVC), polycarbonate (PC)/poly(ethylene adipate) (PEA), polystyrene/poly(vinyl acetate) (PS/PVAc), and ethylene vinyl acetate copolymer (EVA Co)/chlorinated polyethylene (CPE), the capabilities of the proposed functionality for the interaction parameter was studied. It is shown that this function can be used satisfactorily for the heat‐of‐mixing calculations and phase‐behavior predictions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1328–1340, 2000  相似文献   

19.
The effect of polymer–polymer compatibility on interdiffusion at polymer interfaces with dissimilar mobilities was investigated by attenuated total internal reflectance infrared spectroscopy. The polymer pair consisting of polystyrene and poly(vinyl methyl ether) was used to study interdiffusion at the interface of compatible polymers. The polymer pair consisting of polystyrene and poly(isobutyl vinyl ether) was used to study interdiffusion at the interface of incompatible polymers. Results indicate that the extent of interdiffusion is controlled by the polymer–polymer compatibility parameter, irrespectively of the differences in the mobility of the polymers.  相似文献   

20.
Triple‐shape‐memory polymers are capable of memorizing two temporary shapes and sequentially recovering from the first temporary shape to the second temporary shape and eventually to the permanent shape upon exposure to a stimulus. In this study, unique three‐component, multilayered films with an ATBTA configuration [where A is polyurethane (PU), B is ethylene vinyl acetate (EVA), and T is poly(vinyl acetate) (PVAc)] were produced as a triple‐shape‐memory material via a forced‐assembly multilayer film coextrusion process from PU, EVA, and PVAc. The two well‐separated thermal transitions of the PU–EVA–PVAc film, the melting temperature of EVA and the glass‐transition temperature of PVAc, allow for the fixing of the two temporary shapes. The cyclic thermomechanical testing results confirm that the 257‐layered PU–EVA–PVAc films possessed outstanding triple‐shape‐memory performance in terms of the shape fixity and shape‐recovery ratios. This approach allowed greater design flexibility and simultaneous adjustment of the mechanical and shape‐memory properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44405.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号