首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of coupling agents, silicone oil, and three types of polymeric modifiers on the mechanical properties of linear low density polyethylene (LLDPE) composites highly filled with aluminium hydroxide [Al(OH)3] were studied. Polymeric modifiers that contain polar groups, such as silane‐grafted polyethylene (Si‐g‐PE) and acrylic‐acid‐grafted ethylene‐vinyl acetate copolymer (AA‐g‐EVA), improve the mechanical properties dramatically, while nonpolar modifiers improve them to some extent. When Al(OH)3 was treated using a titanate coupling agent, the silicone oil increased the impact strength and elongation at break of the LLDPE/Al(OH)3 composites. Introduction of a polymeric modifier containing polar groups destroys the beneficial effects of silicone oil on film mechanical properties, while the introduction of a nonpolar elastomeric polymeric modifier retains the high impact strength and elongation at break. SEM analyses provide the indirect evidence of the encapsulation of silicone oil around the filler. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 121–128, 2002  相似文献   

2.
The effect of surface modification on the mechanical properties and microstructure of the composites of high‐density polyethylene (HDPE), silicone oil, and aluminum hydroxide [Al(OH)3] was investigated. The dispersion of silicone oil in the HDPE composites was studied by scanning electric microscope (SEM) and differential scanning calorimetry (DSC). In the HDPE/Al(OH)3/silicone oil composites, two types of dispersion structure of silicone oil were observed resulting from different surface modifications. In the composites surface modified with titanate NDZ‐130, calcium stearate, or oleic acid, silicone oil encapsulates around Al(OH)3 particles, and both the notched impact strength and the elongation at break are very high. However, in the composites surface modified with silane KH‐550 or silane‐g‐HDPE, silicone oil and Al(OH)3 particles separately disperse in HDPE, and both the notched impact strength and the elongation at break are very low. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1896–1903, 2002  相似文献   

3.
The room temperature tensile properties of granular starch‐filled low‐density polyethylene (PE) and starch‐filled blends of PE and poly(hydroxy ester ether) (PHEE) are presented. At low filler contents (?f), the filled PE:PHEE blend has a higher yield stress and tensile strength than either the starch/PE composites or the unfilled matrix. The increase in the yield stress indicates that matrix yielding occurs before debonding. At high filler contents, the tensile strength of the filled blend is again greater than the strength of the starch/PE composites. This increase in strength is the result of higher debonding stresses in the ternary composite. In both materials there is a change in the deformation process at a critical filler content, ?cr. Below ?cr, deformation involves the growth of debonded regions; above ?cr, deformation is confined to narrow damaged zones. There is a reduction in the strain at failure when this change in the deformation process occurs. Although the PHEE surface coating affects the debonding stress and the tensile strength, it does not affect the strain at failure or the tensile modulus. For both composite materials, the increase in modulus with ?f can be adequately described using a simplified form of the Kerner equation. Polym. Eng. Sci. 44:1839–1847, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
The tensile behavior of high‐density polyethylene (HDPE), polypropylene (PP), and linear low‐density polyethylene composites containing a titanate coupling agent and silicone‐oil‐treated magnesium hydroxide [Mg(OH)2] was studied. The increase in the extent of the ultimate elongation of the composites was affected by the yield stress and the strain‐hardening tendency of the polymer matrix in the composites. Ethylene–propylene–diene rubber and octane–ethylene copolymer were introduced to adjust the yield stress of PP and HDPE. Although the ultimate elongation of PP/elastomer and HDPE/elastomer blends was higher than that of virgin PP or HDPE, the ultimate elongation of the filled composites dropped at a high content of Mg(OH)2. Scanning electron microscopy showed that the difference in the uniformity of the interface exfoliation decreased with the yield stress of the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3248–3255, 2003  相似文献   

5.
Palm kernel shell (PKS), a waste from the oil palm industry, has been utilized as filler in low‐density polyethylene (LDPE) eco‐composites in the present work. The effect of PKS content and coconut oil coupling agent (COCA) on tensile properties, water absorption, and morphological and thermal properties of LDPE/PKS eco‐composites was investigated. The results show the increase of PKS content decreased the tensile strength and elongation at break, but increased the tensile modulus, crystallinity, and water absorption of eco‐composites. The presence of COCA as coupling agent improved the filler‐matrix adhesion yield to increase the tensile strength, tensile modulus, crystallinity, and reduced water absorption of eco‐composites. The better interfacial adhesion between PKS and LDPE with the addition of COCA was also evidenced by scanning electron microscopy studies. J. VINYL ADDIT. TECHNOL., 22:200–205, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
The effect of ethylene–propylene–diene terpolymer (EPDM), dicumyl peroxide (DCP), and dimethyl silicone oil on the mechanical properties of high‐density polyethylene (HDPE) composites filled with 60 mesh cryogenically scrap rubber powder (SRP) was studied. The addition of 10 wt % EPDM, 0.2 wt % DCP, and 4 wt % dimethyl silicone oil significantly increased both the impact strength and elongation at break of the HDPE/SRP composites. After the modification, the impact strength increased by 160%, and the elongation at break increased by 150% for the composites containing 40 wt % SRP. The impact load–time curves showed that the increase of impact energy for the modified composites was attributed to the increase of the maximum force at yield point and the ductile deformation after yielding. The rheological behavior, dynamic mechanical properties, and morphology observation suggested that an enhanced adhesion between SRP and polymer matrix formed in the modified HDPE/SRP composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2020–2027, 2003  相似文献   

7.
A polymeric agent acrylic acid grafted polyethylene (AAgPE) was synthesized and used as a coupling agent in aluminum hydroxide [Al(OH)3] highly filled linear low‐density polyethylene (LLDPE) composite. It is found that AAgPE improves the interfacial adhesion between the filler and the polyethylene matrix, which results in good mechanical properties of the composite. Silicon oil is an effective additive for improving the impact strength, the elongation at break, and the rheological property of the filled composite, but it decreases the tensile strength remarkably. The combination of AAgPE and silicon oil can lead to good performance of the composite. Flammability properties and fracture surface morphologies of the composites through scanning electron microscopy were investigated. The relationship between mechanical properties and microstructure of the composites was discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2544–2549, 2002  相似文献   

8.
A study of the influence of employing ultrahigh molecular weight polyethylene (UHMWPE) on the toughness of CaCO3/high‐density polyethylene (HDPE) composites was carried out. Binary and ternary HDPE‐based composites with calcium carbonate in the range of 0–40% and UHMWPE in the range of 0–50% were produced by twin‐screw extrusion followed by compression molding. From tensile and impact tests, it was found that increasing calcium carbonate content increased tensile modulus, but decreased tensile strength, strain at break, and impact resistance. The addition of UHMWPE helped to increase the strain at break and impact resistance of composites moderately without decreasing modulus or strength. The degree of toughening was found to increase with increasing UHMWPE content, but to decrease as the filler volume fraction was increased. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1503–1513, 2000  相似文献   

9.
Ultra‐high‐molecular‐weight polyethylene (UHMWPE)/nano silicon carbide (nano‐SiC) composites were prepared by compression molding. The effects of a coupling agent and the content of the filler on the filler dispersion and the mechanical and thermal properties of the composites were investigated. The results show that the mechanical properties of the composites first increased and then decreased with increasing SiC content. The macromolecular coupling agent exhibited a much better reinforcing effect than the small‐molecule coupling agent. The tensile strength of the composites with 3‐aminopropyltriethoxysilane (KH550), γ‐methacryloxypropyltrimethoxysilane (KH570), and silicone powders reached its maximum value when the silicon carbide (SiC) content was 3%. We found that a web of the UHMWPE/SiC/coupling agent was formed and played a significant role in improving the heat resistance of the composites. In addition, appropriate amounts of SiC could increase the crystallinity of UHMWPE via a process of heterogeneous nucleation. The comprehensive performance of the KH550/silicone/SiC/UHMWPE composites was the best. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The effects of various types of compatibilizers on the mechanical properties of high‐density polyethylene/wood flour composites were investigated. Functionalized polyolefins, including maleated polyethylenes, polypropylene, and styrene–ethylene/butylene–styrene copolymer, were incorporated to reduce the interfacial tension between the polyethylene matrix and wood filler. Of these, maleated linear low‐density and high‐density polyethylenes gave higher tensile and impact strengths for the composites, presumably because of their better compatibility with the high‐density polyethylene matrix. Similar but less enhanced improvements in the mechanical properties, depending on the compatibilizer loading, were seen for a maleated styrene–ethylene/butylene–styrene triblock copolymer, whereas maleated polypropylene only slightly improved the tensile modulus and tensile strength, which increased with increasing compatibilizer loadings. Scanning electron microscopy was used to reveal the interfacial region and confirm these findings. Dynamic mechanical thermal measurements showed the interaction between the filler and the matrix. Fourier transform infrared spectroscopy was used to assign the chemical fixation and the various chemical species involved on the surfaces of the fillers before and after surface treatment. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 487–496, 2003  相似文献   

11.
Two‐phase blends of silicone rubber (SR) and linear low density polyethylene (LLDPE) were prepared by reactive blending using peroxide crosslinking agent of SR. The tensile strength and elastic modulus of the SR were found to be increased by reactive blending with LLDPE without sacrifice of the elongation. The improvement of the tensile properties is attributed to the strong adhesion at the interface between SR matrix and LLDPE domain due to the chemical reaction by peroxide. The observation by polarized optical microscopies revealed that the debonding did not occur at the interface, but the LLDPE domains were elongated to longer one. Despite the elongation of the LLDPE domain, the blends exhibited good deformation recoverability. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46192.  相似文献   

12.
Magnesium hydroxide‐based halogen‐free flame retarded linear low density polyethylene composites containing poly(ethylene‐co‐propylene) elastomer were prepared in the melt process and subsequently vulcanized thermally. Influences of the elastomer on the mechanical properties, combustion characteristics and crystallization behaviour of polyethylene/magnesium hydroxide composites have been investigated. The results from the mechanical tests show that the incorporation of a suitable amount of elastomer into polyethylene/magnesium hydroxide composites after vulcanization can increase both the tensile strength and elongation greatly, compared with those of the composites without the elastomer. It has been found that the properties such as limiting oxygen index, UL‐94 rating, the time to ignition and the rate of heat release of polyethylene/magnesium hydroxide/elastomer composites are all improved in comparison with polyethylene/magnesium hydroxide composites at the same retardant level. Scanning electron microscopy studies show that the incorporation of the elastomer into polyethylene/magnesium hydroxide composites improves the compatibility between the filler and the polymer substrate. The degrees of crystallinity of polyethylene/magnesium hydroxide/elastomer composites decrease with increasing the elastomer content. © 2002 Society of Chemical Industry  相似文献   

13.
Silicone masterbatch (SMB) is a pelletized formulation containing 50% of an ultrahigh molecular‐weight polydimethylsiloxane dispersed in polyethylene. This SMB is designed to be used as an additive in polyethylene‐compatible systems to impart benefits such as processing improvement and modification of surface characteristics. In this work, binary blends of high‐density polyethylene (HDPE) and SMB were prepared by melt‐mixing technique to study the influence of this masterbatch on the processing and mechanical properties of HDPE. Ternary blends were also prepared by the addition of silane‐grafted polyethylene (HDPE‐VTES) as compatibilizer. The blends were analyzed by melting flow rate (MFR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile tests. Data of final torque and MFR showed that SMB improved the processability of pure HDPE. DSC results showed differences in crystalline behavior between binary and ternary blends. In the former, the degree of crystallinity increased up to 10 wt % of SMB content; beyond this concentration, it decreased. In ternary blends, a reverse behavior was observed. The morphologic study showed silicone particles uniformly distributed in HDPE matrix. With high SMB concentration, the addition of HDPE‐VTES significantly reduced the size of silicone particles. In the range of SMB composition studied, the mechanical properties of blends lower slightly compared to pure HDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2347–2354, 2002  相似文献   

14.
This study is aimed at utilizing nutraceutical industrial waste and reducing carbon footprints of plastics. Eco‐friendly “green composites” of high density polyethylene (HDPE) were fabricated using coleus spent (CS)—a nutraceutical industrial waste as reinforcing filler and maleic anhydride‐graft‐polyethylene (MA‐g‐PE) as compatibilizer. Composites were fabricated with 5, 10, 15, and 20% (w/w) of CS by extrusion method. The fabricated HDPE/CS composites were evaluated for mechanical and thermal behavior. A slight improvement of about 5% in tensile strength and marked improvement of about 25% in tensile modulus for 20 wt % CS filled HDPE composites was noticed. The effect of CS content on rheological behavior was also studied. Thermal characteristics were performed using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA thermogram indicated increased thermal stability of CS‐filled composites. From TGA curves the thermal degradation kinetic parameters of the composites have been calculated using Broido's method. The enthalpy of melting (ΔHm) obtained from DSC curves was reduced with increase in CS content in HDPE matrix, due to decrease in HDPE content in composite systems. An increase in CS loading increased the water absorption behavior of the composites slightly. Morphological behavior of cryo‐fractured composites has been studied using scanning electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Reactive high vinyl silicone oil (HVSO) was selected to prepare the ceramic silicone rubber composites. The effects of HVSO on the mechanical properties and thermal stabilities of ceramic silicone rubber composites were investigated. The structures of the cross‐linked network of silicone rubber with or without HVSO were studied. The intermolecular space of silicone rubber was enlarged, and the cross‐linked point was concentrated by addition of HVSO, which was demonstrated by cross‐linking densities, scanning electron microscope (SEM) images, and dynamic mechanical analysis (DMA). The cross‐linked network model was formed with the slipping of the cross‐linked points along with the silicone rubber chain. Mechanical properties of composites were enhanced by the formation of this cross‐linked network. The tear strength, tensile strength, and elongation at break of the composites were increased by 18.5%, 13.2%, and 37.4% by the adding of 2 phr HVSO, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41864.  相似文献   

16.
A process for making high‐density polyethylene (HDPE) single‐polymer composites (SPCs) by insert injection molding was investigated. HDPE SPCs with relatively good tensile and interfacial properties were prepared within a short cycle time within a temperature range of 40°C. Melt‐spun HDPE fibers were made from the same resin as the matrix. The fibers were heat treated in silicone oil, with and without tension, to study the changes of fiber properties upon exposure to high temperature. HDPE SPCs containing about 30 wt% lab‐made HDPE fabric achieved a tensile strength of 50 MPa, 2.8 times that of neat HDPE. The peel strength of HDPE SPCs increased with increasing injection temperature and achieved a maximum value of 16.7 N/cm. Optical micrographs of polished transverse cross‐sections of the SPC samples showed that higher injection temperature is beneficial to the wetting and permeation properties of the matrix. Scanning electronic microscope photographs suggested good bonding and compatibility between the fibers and the matrix. POLYM. ENG. SCI., 55:2448–2456, 2015. © 2015 Society of Plastics Engineers  相似文献   

17.
The effect of varied rubber tree seed shell flour (RSSF) filler loadings on processing torque, mechanical, thermal, water absorption, and morphological properties of polypropylene (PP) and high‐density polyethylene (HDPE) composites has been studied. The addition of RSSF in the composites increased the stabilization torque in both PP‐ and HDPE‐based composites. Tensile strength, elongation at break, flexural strength, and impact strength show significant reduction when higher loading of RSSF was incorporated, while tensile modulus and flexural modulus were improved. The phenomenon was noted for both matrices, PP and HDPE, but HDPE‐based composites showed clear effects on the reduction of the mechanical properties compared with RSSF‐filled PP. Scanning electron microscopy of tensile fracture specimens revealed the degree of dispersion of RSSF filler in the matrices. At higher filler loadings, agglomerations and poor dispersion of RSSF particles were spotted, which induce the debonding mechanism of the system. Thermogravimetric analysis thermograms showed that both PP‐ and HDPE‐based composite systems with higher RSSF content have higher thermal stability, initial degradation temperature, degradation temperature, and total weight loss. Water absorption ability of the composites increases as the filler loading increases for both matrices. J. VINYL ADDIT. TECHNOL., 22:91–99, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
Precipitated CaCO3 (PCC)/High Density Polyethylene (HDPE) composites were prepared on a twin screw mixer-single screw extruder with a particle content of 10 vol%. The average particle size was 70 nm. The influence of surface treatment of the particles, with and without stearic acid (SA), on the physico-mechanical and rheological properties was studied. The experiments included tensile tests, impact tests, differential scanning calorimetry (DSC), microscopy and rheology experiments. The addition of 10 vol% calcium carbonate to HDPE causes a rise in Young's modulus and yield stress of its composites and is accompanied by a sharp drop in impact strength. The addition of SA has the effect of slightly decreasing both Young's modulus and yield stress of the composites compared to the uncoated PCC composites, while the impact strength progressively increases.During the tensile test filled HDPE composites showed stress whitening zones appear and develop along the gauge length. Volume measurements during tensile tests showed an increase in volume strain with deformation, due to the matrix-particle debonding phenomenon, while pure HDPE showed actually a decrease in volume with elongation. At constant deformation, for the composites with coated PCC, it can be observed that an increase in the SA content leads to a slight decrease in volume change. The microscopical evaluation showed cavities and voids due to debonding and deformation bands in the stress whitened areas.DSC experiments have shown that uncoated PCC particles have a very small nucleating effect on HDPE.  相似文献   

19.
This paper is focused on the quantitative characterization of cavitation developing in unfilled and nano‐CaCO3 filled high density polyethylene (HDPE) subjected to tensile test. In particular, a methodology to reveal the voids, take into account their localization, and evaluate their characteristics (density and shape), is presented. For this, post‐mortem investigations coupling a cryosectioning method and a pressure‐controlled scanning electron microscope (PC‐SEM) were conducted. In the two materials, whatever the active cavitation mechanism (crazing in neat HDPE or debonding in CaCO3/HDPE system), it was shown that the cavity density and the cavity height/width ratio (shape factor) increase with the deformation state. These two parameters are also influenced by the macroscopic stress triaxiality generated by the necking process. Indeed, when the intensity of the triaxiality is high, the cavity density and the cavity shape factor significantly increase from the skin to the core of the specimen. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

20.
This article reports on the influence of the paraffin (PAR) on the wood fiber (WF) dispersion in different polyethylene (low‐density polyethylene, high‐density polyethylene, recycled polyethylene) matrices, as well as on the melt flow behavior and mechanical properties of WF‐reinforced polyethylene (PE) composites. In the presence of paraffin, the composites showed improved tensile and flexural strength and modulus, but lower impact strength and elongation at break. The extent of improvement in mechanical properties depends on paraffin content and type of polyethylene; the most effective paraffin was in LDPE‐based composites. Paraffin‐treated WF showed lower moisture absorption ability in comparison with unmodified wood fiber. The phase segregation process was investigated for PE/PAR blends by DSC method. It was shown that an increase of paraffin concentration in the PE/PAR blend leads to a decrease of PE melting temperature and an increase of paraffin melting temperature; it indicates a net exchange of material from paraffin towards polyethylene. However, generally both components of PE/PAR blends remain immiscible. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2385–2393, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号