首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of liquid crystalline polymers containing aromatic triad ester mesogen and 1,1′‐disubstituted ferrocene as a nonmesogenic unit along with polymethylene spacer was synthesized. The polymer was synthesized by a room temperature polycondensation reaction between bis(4‐chloroformyl phenyloxy alkyl ferrocene dicarboxylate) and quinol. The alkyl groups have been varied by an even number of methylene groups with a range from two to ten groups. All the polymers were found to possess liquid crystalline properties. The identification of the mesophase is more transparent with an increase in the spacer. The thermal characteristics were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results reveal that the thermal stability of the polymers was decreased with increasing spacer length. The Tg, Tm, and Ti of the polymers decreased with increasing methylene groups. The incorporation of the ferrocene moiety also has a considerable effect on the glass transition temperature. The char yield of the polymer decreases with an increasing methylene chain length. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3494–3501, 2002  相似文献   

2.
A series of new cholesteric liquid‐crystalline polysiloxanes ( P1 – P5 ) derived from menthyl groups were synthesized. The chemical structures of the monomers and polymers were characterized with Fourier transform infrared, 1H‐NMR, 13C‐NMR, and elemental analyses. The mesomorphic properties and thermal behavior were investigated with differential scanning calorimetry, polarizing optical microscopy, thermogravimetric analysis, and X‐ray diffraction measurements. The influence of the polymer structure on the thermal behavior was discussed. The monomer diosgeninyl 4‐allyloxybenzoate exhibited a typical cholesteric oily‐streak texture and a focal‐conic texture. Polymers P1 – P5 showed thermotropic liquid‐crystalline properties. P1 displayed a smectic fan‐shaped texture, P2 – P5 showed a cholesteric Grandjean texture, and P6 and P7 did not show mesomorphic properties. The experimental results demonstrated that the glass‐transition temperature and the clearing temperature decreased, and the mesomorphic properties weakened with an increasing concentration of menthyl units. Moreover, P1 – P5 exhibited wide mesophase temperature ranges and high thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5559–5565, 2006  相似文献   

3.
BACKGROUND: Owing to the unusual structural rearrangement of polychloromethylthiirane (PCMT) at room temperature, it has not been used as the main‐chain backbone of side‐chain liquid‐crystalline polymers (SLCPs). However, it has been observed that PCMT has a relatively stable and clear structure under special conditions. Therefore, we attempted to synthesize SLCPs using PCMT as main‐chain backbone and investigated their thermal behavior. RESULTS: New polymers, poly[1‐({(4‐methoxyazobenzene‐4′‐oxy)alkyl}thio)‐2,3‐epithiopropane], in which the number of methylene units in the alkyl group is 4, 5 or 6, were prepared by means of reactions of corresponding (4‐methoxyazobenzene‐4′‐oxy)alkylthiols with PCMT. The structures of these compounds were confirmed using elemental analysis and 1H NMR spectroscopy. The substitution ratios of the copolymers with 4, 5 and 6 methylene units in the alkyl group were 56, 75 and 80%, respectively. Differential scanning calorimetry measurements and polarized optical microscopy observations showed that the resulting copolymers exhibited thermotropic liquid‐crystalline mesomorphism with nematic phase except for the copolymer with a 56% substitution ratio. The decomposition temperature of all the synthesized copolymers was near 195 °C. CONCLUSION: This investigation has demonstrated that PCMT polymerized for 8 h has the ability to act as a suitable main‐chain backbone for SLCPs. Moreover, SLCPs could be obtained only by the reaction of PCMT with thiolate salt containing mesogenic groups. The substitution ratios increased with increasing number of methylene groups in the spacer. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
To improve toughness, a liquid‐crystalline polymer (LCPs) was blended with polyethylenes containing epoxy functionality in concentrations of 2, 6, and 15 wt %. The blends were prepared with a corotating twin‐screw extruder and were injection‐molded into specimens for mechanical testing. The effect of the amount of the epoxy‐functionalized polyethylenes on the morphology and mechanical and thermal properties was studied. The toughness improved with increasing amount of functionalized polyethylene, and the blend containing 15 wt % epoxy‐functionalized polyethylene had the best toughness properties. Impact strength values up to three times higher than those of the neat LCP were achieved. However, the stiffness of the LCP concurrently decreased substantially. The morphology became much more uniform, and the melting behavior changed. The results show that considerable improvements in the toughness properties of LCPs can be achieved with epoxy‐functionalized polyethylenes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1886–1891, 2002  相似文献   

5.
A new class of main‐chain liquid‐crystalline photodimerizable vanillylidene‐containing alkylpolyphosphate esters were synthesized from 2,5‐bis[m‐hydroxyalkyloxy(vanillylidene)] cyclopentanones with various alkylphosphoro‐ dichloridates by solution polycondensation in chloroform at ambient temperature. Their chemical structures were confirmed by FT‐IR, 1H, 13C and 31P NMR spectroscopic analysis. Dilute‐solution viscosity values were measured in order to obtain the intrinsic viscosities of the synthesized polymers. Mesogenic properties and phase behavior were investigated by the use of hot‐stage optical polarized microscopy and differential scanning calorimetry. Thermogravimetric analysis revealed that all of the polymers were stable up to 170–230 °C and decomposed with high char yields. The shorter methylene‐chain‐containing polymers did not show a liquid‐crystalline phase, while the longer methylene‐chain‐ containing polymers showed grainy and nematic textures. The Tg, Tm and Ti values of the polymers decreased with increasing flexible methylene chain length in the polymer backbones. The photocrosslinking properties of the polymers were studied by UV light/UV spectroscopy; the crosslinking proceeds via 2π–2π cycloaddition reactions of the vanillylidene exocyclic double bonds of the polymers. The rate of crosslinking was faster for the pendant ethoxy‐containing polymers than that of the pendant methoxy‐containing polymers. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
A new series of thermotropic liquid‐crystalline (LC) polyphosphate esters containing phenolphthalein as a part of their mesogen has been synthesized by a solution polycondensation method. The even‐numbered methylene spacers were varied from 2–10, and ethyl phosphate was used as a phosphorus heterogeneity. Thermal analysis showed that these polymers are stable up to 275–342°C with high char yield. All of the polymers exhibited liquid‐crystalline properties except for Polymers I and VI. Differential scanning calorimetry (DSC) confirmed the mesophase formation of the polymers. The glass transition temperature (Tg) and melting temperature (Tm) of the polymers were considerably low. A polymer containing phenolphthalein alone as a rigid segment with decamethylene spacers was also synthesized, but it did not show birefringent melt properties. These results reveal that phenolphthalein alone cannot act as a mesogen, whereas phenolphthalein phenylester can. Molecular modeling studies and conformational analysis confirmed that the steric hindrance of phenylester and the conjugation effect could explain the promotion of mesogenic behavior by phenolphthalein phenylester. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 194–200, 2004  相似文献   

7.
Thermotropic liquid‐crystalline polymers (TLCPs) have aroused considerable interest due to their attractive properties as high‐performance materials. Significant research attention has been devoted to investigating the relationship among monomer structures, syntheses and end‐use properties of TLCPs. The study reported here concerns the preparation, characterization and melt spinning of novel copolyesters containing two different flexible units together with two different aromatic units in the polymer chains. A range of copolyesters based on p‐hydroxybenzoic acid (p‐HBA), m‐hydroxybenzoic acid, p‐hydroxyphenylacetic acid and poly(ethylene terephthalate) were synthesized. The liquid crystallinity, thermal properties and degrees of crystallinity of these copolyesters were investigated using hot‐stage polarized light microscopy, differential scanning calorimetry, thermogravimetry and wide‐angle X‐ray diffraction. Copolyester fibres were characterized using scanning electron microscopy. The copolyesters were melt‐processable, thermally stable and could be processed above their melting temperatures without degradation. The degree of crystal structure was found to depend upon the content of p‐HBA. The fibres prepared showed that polymer chains had a well‐developed fibrillar structure. Novel TLCPs containing flexible units in the main chain were synthesized and characterized. Copolyesters containing p‐HBA units ranging from 55 to 70 mol% exhibited phase‐separated liquid‐crystalline morphology, appropriate melting temperatures and high thermal stability for melt processing. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Homo‐ and copolyesters of derivatives of hydroxyazobenzenecarboxylic acid with various percentage compositions of m‐hydroxy benzoic acid (m‐HBA)/p‐hydroxy benzoic acid (p‐HBA) were synthesized and characterized. The properties of the copolyesters were compared with their corresponding homopolyesters. The solubility of the copolyesters with m‐HBA increased because of the decrease in the rigidity of the polymer chain attributed to the introduction of nonlinear molecules, whereas the solubilities of the copolyesters with p‐HBA changed only slightly compared to their corresponding homopolyesters. Thermal and phase behaviors of the polymers were characterized by TGA, DSC, and polarizing light microscopy (PLM) methods. Above 30% composition of m‐HBA, the thermal stability of the copolyesters with m‐HBA decreased compared to that of the homopolyester P1, whereas the copolyesters of p‐HBA possessed greater thermal stability than that of their homopolyesters at all compositions. The introduction of the long, flexible alkyl side chain laterally to the backbone of the azobenzene moiety drastically reduced the transition temperature of the homopolyester, but without destroying the mesophase. The effect of copolymerization on liquid‐crystalline behavior and transition temperature of the copolymers was discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1976‐1982, 2004  相似文献   

9.
Poly(4‐vinylpyridine)s (P4VPs) fully and partially quaternized with dialkyloxyterphenyl groups were synthesized and characterized. These new polymers developed both liquid‐crystalline (LC) properties and a light emission (luminescence) in the blue region. The mesomorphic behavior of the polymers was initially characterized by differential scanning calorimetry and polarizing optical microscopy and was further corroborated by X‐ray diffraction analyses. The X‐ray diffraction patterns showed in the low‐angles region several equidistant diffraction peaks (d001, d002, d003, …) and in the wide‐angles region a broad peak typical of nonordered mesophases. From d001 and the length of the monomers, we deduced that the molecular arrangement in the mesophase corresponded to a double‐layered stacking of molecules with mesogens tilted with respect to the smectic plane and the backbones sandwiched between. In this arrangement, the different parts of mesogens are segregated from one another in layered domains. The longer smectic periods observed for copolymers indicated that the nonsubstituted pyridine cycles were sandwiched between two smectic layers. The emission spectra of these polymers were characterized by a broad signal centered at 365 nm. The combination of LC properties with luminescence in the polymers is interesting for the preparation of thin films with aligned emitters, particularly for linearly polarized light emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Silicone‐based cholesteric liquid crystalline polymers (ChLCP) were fabricated with variable clearing temperatures as controlled by their chemical compositions. The chemical structures of the mesogenic monomers and ChLCP were confirmed by FTIR and 1H‐NMR spectroscopy. The mesogenic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X‐ray diffraction measurements. The experimental results demonstrated that the glass transition temperatures and the clearing points of the liquid crystalline polymers decreased with increasing proportion of mesogenic crosslinking agent up to 12.50 mol % (LCP‐3), and at higher proportion of crosslinking agent, the clearing points disappeared, indicating that the network chains have less chance to orient themselves. Thermogravimetric analysis showed that the LCP‐3 was the most stable up to 230°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Syntheses of novel liquid‐crystalline polymers containing azobenzene moieties were performed by a convenient route with an acrylate backbone. The azobenzenes were key intermediates of the monomers, and side‐chain liquid‐crystalline polymers were prepared, that is, poly[α‐{4‐[(4‐acetylphenyl)azo]phenoxy}alkyloxy]acrylates, for which the spacer length was 3 or 11 methylene units. In addition, poly[3‐{4‐[(3,5‐dimethylphenyl)azo]phenoxy}propyloxy]acrylate was prepared with a spacer length of 3 methylene units. The structures of the precursors, monomers, and polymers were characterized with Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The polymers were obtained by conventional free‐radical polymerization with 2,2′‐azobisisobutyronitrile as an initiator. The phase‐transition temperatures of the polymers were studied with differential scanning calorimetry, and the phase structures were evaluated with a polarizing optical microscopy technique. The results showed that two of the monomers and their corresponding polymers exhibited nematic liquid‐crystalline behavior, and one of the monomers and its corresponding polymer showed smectic liquid‐crystalline behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2653–2661, 2002  相似文献   

12.
The synthesis of side chain cholesteric liquid‐crystalline polymers containing both 4‐cholesteryl‐4'‐acryloyloxybenzoate (MI) and 4‐methoxyphenyl‐4'‐acryloyloxybenzoate (MII) mesogenic side groups is described. The chemical structures of the obtained monomers and polymers are confirmed by Fourier transform infrared (FTIR) spectroscopy. The phase behavior and optical properties of the synthesized monomers and polymers were investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA). The homopolymer IP reveals a cholesteric phase and VIIP displays a nematic phase. The copolymers IIP–VIP exhibit, respectively, cholesteric oily‐streak texture and focal‐conic texture. The fixation of the helical pitch and oily‐streak texture of the cholesteric phase is achieved by quenching, and polymer films with different reflection colors are obtained. The experimental results demonstrate that the glass transition temperature (Tg) and the melting temperature (Tm) of the copolymers IIP–VIP decrease, whereas the isotropization temperature (Ti) and the mesomorphic temperature range (ΔT) increase with increasing content of mesogenic MII units. TGA results indicate that the temperatures at which 5% mass loss occurred (T5wt%) of all copolymers are >245°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1936–1941, 2003  相似文献   

13.
A series of liquid‐crystalline (LC) polysiloxanes were synthesized by two different cholesteric monomers, cholest‐5‐en‐3‐ol(3β)‐10‐undecenoate and cholesteryloxycarbonylmethyl 4‐allyloxybenzoate. The chemical structures and LC properties of the monomers and polymers were characterized by various experimental techniques, including Fourier transform infrared spectroscopy, 1H‐NMR, elemental analysis, differential scanning calorimetry, and polarized optical microscopy. The specific rotation absolute values increased with increasing rigid spacers between the main chain and the mesogens. All of the polymers exhibited thermotropic LC properties and revealed cholesteric phases with very wide mesophase temperature ranges. With a reduction in the soft‐space groups in the series of polymers, the glass‐transition temperature and the isotropic temperature increased slightly on heating cycles. Reflection spectra of the cholesteric mesophase of the series of polymers showed that the reflected wavelength shifted to short wavelengths with decreasing soft‐space groups in the polymers systems, which suggested that the helical pitch became shorter with increasing rigid‐space groups. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
This paper presents a computational conformational study of side‐chain liquid‐crystal polymers to predict the optical and liquid‐crystalline properties of a series of polyepicholorohrdrin, polyacrylate, poly(methyl acrylate), and polystyrene‐based side‐chain polymers using a Monte Carlo simulation method. Some of the simulated side‐chain polymers were synthesised by chemical modification or polymerisation. The predictive capability of the orientational order parameter has been utilised to predict the liquid‐crystalline isotropic transition temperature of the investigated polymers, which was used to infer the type of distribution in the synthesised polymers. The predictive possibilities of this criterion are explored in the estimation of the nematic–isotropic transition temperatures of the simulated polymers. Evidence is presented to suggest that for side‐chain liquid‐crystalline polymer molecules the nematic to isotropic transition occurs when the order parameter reaches a value of 0.43 according to Maier–Saupe mean‐field theory. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
A new series of liquid‐crystalline polymers with a polymer backbone of limonene‐co‐methyl methacrylate were synthesized and characterized, and the spacer length was taken to be nine methylene units. The chemical structures of the obtained olefinic compound and polymers were confirmed with elemental analysis and proton nuclear magnetic resonance spectroscopy. The thermal behavior and liquid crystallinity of the polymers were characterized with differential scanning calorimetry and polarized optical microscopy. The polymers exhibited thermotropic liquid‐crystalline behavior and displayed a glass‐transition temperature at 48°C. The appearance of the characteristic schlieren texture confirmed the presence of a nematic phase, which was observed under polarized optical microscopy. These liquid‐crystalline polymers exhibited optical activity. A comparison was also made with polyacrylates and polymethacrylate‐based materials. This revealed that the nature of the polymer backbone had a major effect on the liquid‐crystalline properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4595–4600, 2006  相似文献   

16.
A series of new cholesteric liquid‐crystalline polysiloxanes derived from steroid substituents were synthesized. The chemical structures of the monomers or polymers obtained were characterized by FTIR, element analyses, 1H NMR, and 13C NMR. Their mesogenic properties and thermal stability were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. Monomers exhibited typical cholesteric focal‐conic or spiral texture. The polymers P 1? P 6 showed cholesteric phase and P 7 displayed smectic phase. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

17.
The synthesis of chiral side‐chain liquid‐crystalline polysiloxanes containing both cholesteryl undecylenate (MI) and 4‐allyloxy‐benzoyl‐4‐(S‐2‐ethylhexanoyl) p‐benzenediol bisate (MII) mesogenic side groups was examined. The chemical structures of the obtained monomers and polymers were confirmed with Fourier transform infrared spectroscopy or 1H‐NMR techniques. The mesomorphic properties and phase behavior of the synthesized monomers and polymers were investigated with polarizing optical microscopy, differential scanning calorimetry, and thermogravimetric analysis (TGA). Copolymers IIP–IVP revealed a smectic‐A phase, and VP and VIP revealed a smectic‐A phase and a cholesteric phase. The experimental results demonstrated that the glass‐transition temperature, the clearing‐point temperature, and the mesomorphic temperature range of IIP–VIP increased with an increase in the concentration of mesogenic MI units. TGA showed that the temperatures at which 5% mass losses occurred were greater than 300°C for all the polymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2670–2676, 2002  相似文献   

18.
A developmental thermotropic liquid‐crystalline polymer (TLCP) made by Eastman (trade name LN001) was used for barrier property studies. This material is a highly aromatic TLCP with a Tm of 332°C. A permeability study was carried out to determine the chemical resistance of the TLCP. The permeability of methanol and toluene through a membrane of the TLCP was studied using a two‐part cell and a gas chromatograph to monitor the flux. The membranes of the TLCP and LDPE (as control) were made by compression molding. Both solvents had higher permeability through LDPE than TLCP and that of toluene was higher than that of methanol. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2457–2463, 2003  相似文献   

19.
The liquid‐crystalline (LC) monomer 4‐allyoxybenzoyloxy‐4′‐buthylbenzoyloxy‐p‐phenyl (M1), whose LC phase appeared at lower temperatures, from 137 to 227°C, and the modified mesogenic monomer 4‐allyoxybenzoyloxy‐4′‐methyloxybenzoyloxy‐p‐biphenyl (M2), whose LC phase appeared at higher temperatures, from 185 to 312°C, were prepared. A series of side‐chain LC polysiloxanes containing M1 and M2 were prepared by graft copolymerization. Their LC properties were characterized by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction. The results show that the introduction of the modified mesogenic monomer M2 into the polymeric structure caused an additional increase in the clearing point (isotropic transition temperature) of the corresponding polysiloxanes, compared with unmodified polysiloxanes, but did not significantly affect the glass‐transition temperature. Moreover, the modified polysiloxanes exhibited nematic phases as the unmodified polymer did. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1196–1201, 2005  相似文献   

20.
A semirigid and amorphous commercial liquid‐crystalline copolyester (Rodrun) was filled with mica and calcium carbonate (up to 25 wt %) by direct injection molding. The fillers led to decreases in the processability, as observed by torque increases, but maintained the thermal resistance of Rodrun. The effects of the two fillers on the modulus of elasticity, ductility, and tensile strength were the same or very similar. The decrease in the tensile strength (20% for a 10% filler content) was compensated by a generally slight increase in the modulus of elasticity, whatever the filler content was. This balance of properties found in these new liquid‐crystalline‐polymer‐based materials and the important savings that the fillers bring may spread the applications of these materials' matrices. © 2003 Wley Periodicals, Inc. J Appl Polym Sci 88: 998–1003, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号