首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene terephthalate) (PET) films were grafted with n-vinyl-2-pyrrolidone (n-VP) using an azobisisobutyronitrile (AIBN) initiator. Films were pre-treated in dimethyl sulfoxide (DMSO) for 1 h at 140°C before the polymerization reaction was carried out. Variations of graft yield with time, temperature, initiator, and monomer concentrations were investigated. The optimum temperature and polymerization time was found to be 70°C and 4 h, respectively. Increasing monomer concentration from 0.28 to 1.22M and initiator concentration from 1.77 × 10−3 to 4.20 × 10−3M enhanced the percent grafting. The effects of monomer and initiator diffusion on PET films were also studied. The overall activation energy for grafting was calculated as 11.5 kcal/mol. Further changes in properties of PET films such as water-absorption capacity and intrinsic viscosity were determined. The grafted films were characterized with FTIR and scanning electron microscopy (SEM). © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1437–1444, 1997  相似文献   

2.
The graft copolymerization of methyl methacrylate upon gelatin was studied using benzoyl peroxide as an organic initiator in aqueous medium. The grafting reactions were carried out within the 65–90°C temperature range, and the effect of monomer and initiator concentrations on the graft yield were also investigated. The maximum graft yield was obtained at a benzoyl peroxide concentration of 0.20 × 10−2 mol/L and the optimum temperature was 80°C. Thermogravimetric analysis showed that the thermal stability of gelatin increased as a result of grafting. Further, such changes in the properties of methyl methacrylate‐grafted gelatin as density, moisture regain, and water uptake were also determined. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1547–1556, 1999  相似文献   

3.
The synthesis of polyacrylonitrile–poly(ethylene oxide) block copolymers was carried out with the use of modified initiator containing azo groups, being a product of reaction between poly(ethylene oxide) (mol wt 6000) with azobisisobutyronitrile. Effects of initiator concentration, temperature, and synthesis time on the yield, composition, and intrinsic viscosity of the copolymers were examined. To confirm the segmental structure of the obtained products, precipitation, fractionation, gel permeation chromatography, infrared, and 1H nuclear magnetic resonance methods were used. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
The graft copolymerization of reactive pregelled starch (PGS) with methacrylonitrile (MAN) was performed and the reaction conditions were optimized using potassium monopersulfate (PMPS) in the presence of ferrous ion redox pair as initiator. Emphasis was directed towards increasing the graft formation and decreasing homopolymerization. The grafting parameters were studied with respect to graft yield and graft reaction efficiency percent. In addition, the newly prepared polymethacrylonitrile (polyMAN)‐pregelled starch graft copolymers were applied to cotton textiles to see their suitability as a new sizing agent. Based on the results obtained, appropriate conditions for grafting MAN onto pregelled starch was established and the graft yield was higher under the following conditions: using 0.004 mol l?1 potassium monopersulfate as initiator, 0.005 mol l?1 ferrous ion concentration, 0.003 mol l?1, sulfuric acid, 50 % MAN concentration (based on weight of substrate), material to liquor ratio 1:2.5, reaction time 60 min, and polymerization temperature 40 °C. Finally, fabric samples sized with polyMAN‐pregelled starch graft copolymers acquired higher tensile strength and abrasion resistance than that sized with original pregelled starch, while elongation at break was unaltered. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Preparation and Characterization of Starch-g-Polymethacrylamide Copolymers   总被引:2,自引:0,他引:2  
In this article, methacrylamide was successfully grafted onto starch using benzoyl peroxide as a radical initiator in aqueous medium. The extent of grafting was found to be affected by the initiator, monomer, starch concentration, and temperature. The optimum initiator concentration is 2.0×10−3 mol/L. The graft yield was observed to increase with the monomer concentration and temperature. No optimum values for the monomer concentration and temperature were found. The overall activation energy for graft copolymerization was obtained. The grafted starches were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). TGA thermograms showed that the thermal stability of starch increased as a result of grafting. SEM micrographs showed that the granular structure of starch was not maintained after graft copolymerization. The water uptake and moisture retainment values of starch graft copolymers were investigated.  相似文献   

6.
Graft copolymers of sodium carboxymethylcellulose with N‐vinyl‐2‐pyrrolidone were prepared in aqueous solutions with azobisisobutyronitrile as the initiator. The graft copolymers [sodium carboxymethylcellulose‐g‐poly(N‐vinyl‐2‐pyrrolidone)] were characterized with Fourier transform infrared spectroscopy, elemental analysis, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The grafting parameters, including the graft yield of the graft copolymer and the grafting efficiency of the reaction, were evaluated comparatively. The effects of reaction variables such as the time, temperature, and monomer and initiator concentrations on these parameters were studied. The graft yield and grafting efficiency increased and then decreased with increasing concentrations of N‐vinyl‐2‐pyrrolidone and azobisisobutyronitrile and increasing polymerization temperatures. The optimum temperature and polymerization time were 70°C and 4.30 h, respectively. Further changes in the properties of grafted sodium carboxymethylcellulose, such as the intrinsic viscosity, were determined. The overall activation energy for the grafting was also calculated to be 10.5 kcal/mol. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 936–943, 2007  相似文献   

7.
Graft copolymerization of hydroxyethyl methacrylate (HEMA) onto poly(ethylene terephthalate) (PET) fibers using benzoyl peroxide (BP) as initiator was carried out in water and in water/organic solvent as a reaction medium. The effect of initiator concentration, reaction time, temperature, and reaction medium as well as addition of FeSO4 to the polymerization medium was studied. Percent grafting was enhanced significantly by increasing BP concentration up to 0.016 mol/L and then decreased upon further increase in initiator concentration. Increasing the monomer (HEMA) concentration up to 0.48 mol/L improves significantly the graft yield. Raising the polymerization temperature up to 85°C causes a significant increase in grafting yield; further increase in temperature leads to decrease in graft yield. Incorporation of Fe+2 ions in the polymerization system decrease the graft yield. The same situation is encountered when water/solvent mixture is used as reaction medium. Solvent employed were methanol, toluene, and benzene.  相似文献   

8.
Graft copolymerization of low‐density polyethylene (LDPE) onto starch was carried out with glucose–cerium(IV) redox initiator in an aqueous sulfuric acid medium under nitrogen atmosphere. The graft yield was influenced by various parameters like reaction time, temperature, and concentrations of acid, glucose, polyethylene (PE), starch, and initiator. A maximum graft yield of 85.66% was obtained at a temperature of 50°C and at higher concentration of starch. Effect of grafting on crystallinity, morphology, and thermal properties of modified PE has been evaluated using X‐ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA/DTA). Biodegradability of starch‐grafted PE has been tested applying soil‐burial test. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3229–3239, 2006  相似文献   

9.
The graft copolymerization of methyl acrylate onto sago starch was carried out by a free radical initiating process. The free radicals were produced by the chemical initiation method in which ceric ammonium nitrate was used as an initiator. It was found that the percentages of grafting, grafting efficiency, and rate of grafting were all dependent on the concentration of ceric ammonium nitrate (CAN), methyl acrylate (MA), sago starch (AGU), mineral acid (H2SO4), and reaction temperature and period. The variables affecting the graft copolymerization were thoroughly examined. The optimum yield of grafting was obtained when the concentration of CAN, MA, AGU, and H2SO4 were used at 8.77 × 10−3, 0.803, 0.135, and 0.175 mol L−1, respectively. The optimum reaction temperature and period were 50°C and 60 min, respectively. The rate of graft polymerization was explored on the basis of experimental results and reaction mechanism. The evidence of grafted copolymers was investigated by using FTIR spectroscopy, TG, and DSC analysis. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 516–523, 2000  相似文献   

10.
A mixture of acrylamide (AAm) and itaconic acid (IA) was grafted onto poly(ethylene terephthalate) (PET) fibers with benzoyl peroxide in aqueous media. The effects of polymerization conditions such as the temperature, polymerization time, initiator concentration, and monomer mixture ratio on grafting were investigated. The maximum graft yield was 76.1% with an AAm/IA mixture ratio of 90/10 (mol/mol). The graft yield was as low as 3% in the single grafting of IA, whereas the use of AAm as a comonomer increased the amount of IA that entered the fiber structure to 33.5%. An increase in the temperature from 65 to 85°C increased the grafting rate and saturation graft yield. However, an increase in the temperature above 85°C decreased the saturation graft yield. The graft yield increased up to an initiator concentration of 1.0 × 10?2 M and decreased afterwards. The grafting rate was 0.65th‐ and 0.74th‐order with respect to the initiator and AAm concentrations, respectively. The densities, diameters, and moisture‐regain values of the AAm/IA‐grafted PET fibers increased with the graft yield. Similarly, there was an increase in the dyeability of the AAm/IA‐grafted fibers with acidic and basic dyes. The grafted fibers were characterized with Fourier transform infrared and thermogravimetric analysis, and their morphologies were examined with scanning electron microscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1795–1803, 2005  相似文献   

11.
Free‐radical copolymerization of acrylic acid with 2‐acryloyloxyethyl 2,4‐dichlorophenoxyacetate using 1.0 mol/L 1,4‐dioxane solution and 1.5 × 10?2 mol/L of 2,2′ azobisisobutyronitrile as initiator has been carried out at 50°C. In addition to low conversion solution experiments performed to estimate the monomer reactivity ratios, three different copolymerizations over the whole range of conversions have been made. Theoretical values of cumulative copolymer composition, determined by the Mayo‐Lewis terminal model, have been correlated with those experimentally obtained. Finally, the herbicide release in three different aqueous pH buffer solutions has been evaluated in heterogeneous phase. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4238–4244, 2006  相似文献   

12.
The graft copolymerization of 50/50 (w/w) styrene/methyl methacrylate mixtures onto natural rubber seed latex were carried out by using cumene hydroperoxide/sodium formaldehyde sulfoxylate dihydrate/EDTA‐chelated Fe2+ as a redox initiator. The effects of the process factors such as the amount of initiator, emulsifier, and chain‐transfer agent; monomer‐to‐rubber ratio; and temperature on the grafting efficiency (GE) and grafting level (GL) are reported. The mechanism of graft copolymerization was investigated. The synthesized graft copolymers were purified and then characterized by proton nuclear magnetic resonance (1H‐NMR) analysis. Transmission electron microscopy (TEM) was used to study the morphology of the graft copolymers. It appears that the formation of graft copolymers occurs on the surface of the latex particles through a chain‐transfer process. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2993–3001, 2002; DOI 10.1002/app.2328  相似文献   

13.
The graft copolymerization of methyl methacrylate onto silk fibers was investigated in aqueous solution using the Mn(IV)–oxalic acid redox system. The copolymerization reaction was carried out under a variety of conditions such as different monomer, initiator, oxalic acid, acid concentrations, and temperatures. The graft yield increases with increasing initiator concentration up to 5 × 10?2M, and with further increase of the initiator concentration it decreases. The graft yield also increases with increasing sulfuric acid concentration up to 15 × 10?2M, and decreases thereafter. The rate of grafting also increases with increase in oxalic acid concentration up to 1.5 × 10?2M and 84.592 × 10?2M, respectively, and thereafter the rate of grafting shows down. The effect of temperature, solvents, and salts on graft yield has also been investigated and a plausible rate expression has been derived.  相似文献   

14.
A study of the graft copolymerization of acrylonitrile (AN) onto chemically modified coir fibers was carried out using a CuSO4 and NaIO4 combination as the initiator in an aqueous medium in a temperature range of 50–70°C. The graft yield was influenced by the reaction time, temperature, concentration of CuSO4, concentration of NaIO4, and monomer concentration. Grafting was also carried out in the presence of inorganic salts and organic solvents. A combination of copper(II) and sodium periodate (Cu2+‐IO) in an aqueous medium with an IO concentration of 0.005 mol L?1 and a Cu2+ concentration of 0.004 mol L?1 produced optimum grafting. The chemically modified and AN grafted fibers were characterized by FTIR and scanning electron microscopy (SEM). The SEM studies revealed that grafting not only takes place on the surface of the fibers but also penetrates the fiber matrix. The tensile properties like the maximum stress at break and extension at break of untreated, chemically modified, and AN grafted coir fibers were evaluated and compared. The extent of absorption of water of untreated, chemically modified, and grafted coir fibers was determined. It was found that grafting of AN imparts hydrophobicity onto coir fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 75–82, 2002; DOI 10.1002/app.10221  相似文献   

15.
Graft copolymerization of poly(acrylonitrile) onto cassava starch was carried out with potassium persulphate (PPS) as the free radical initiator using a response surface Box–Behnken design. Different levels of monomer concentration, initiator concentration, and temperature were used, and regression models were generated in terms of these factors, which can be used to predict the grafting level and efficiency at a given level of the factors. The grafted starches were characterized by FTIR, XRD, and SEM analyses and determination of %grafting (%G), N‐content, thermal properties, water and saline solution retention, and rheological properties. Under the conditions used, %G was found to depend only on the temperature used for the reaction. The maximum %G of 120.1 was obtained for the sample synthesized under the following conditions: weight of AN = 0.753 mol/10 g starch, weight of PPS = 0.284 g and temperature = 55°C, and the grafting efficiency was 30.03%. The absorption bands at 2243 cm?1 for the nitrile group (? CN) in the FTIR spectra of the products confirmed the grafting reaction. There was a decrease in crystallinity and disappearance of the granular structure after grafting of the starch. The melting temperatures of the graft copolymers determined by differential scanning calorimetry analysis were higher than that of the native starch. The grafted starches exhibited very high thermal stability as observed from the thermogravimetric analysis. The superabsorbent polymer prepared from the grafted starch by alkali saponification exhibited a maximum water absorbency of 636 g/g. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Synthesis of a vinyl monomer, containing a 32‐membered crown ether unit (VCE) as a pendant group, was achieved by using tetra(ethylene glycol) dichloride, resorcinol, and 3,5‐dihydroxyacetophenone as starting materials. The product was identified by means of FTIR and 1H‐NMR. It was found that this monomer readily polymerizes by the conventional radical initiator 2,2′‐ azobisisobutyronitrile (AIBN) to afford a polymer whose number‐average molecular weight is 36 kg/mol; however, the final conversion of the polymer was < 80%. The results of the copolymerization of VCE with styrene (ST) or acrylonitrile (AN) are also discussed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2372–2379, 2002  相似文献   

17.
The free radical polymerization kinetics of the isomer sodium salts of o‐ and p‐methacryloylaminophenylarsonate in aqueous solution have been studied using a dilatometric method. The polymerizations, initiated with potassium persulfate, were carried out at a constant monomer initial concentration of 0.50 mol/L and the initiator initial concentration was fixed at one of the following: 1.00, 2.00, 5.00, 8.00, or 10.00 (× 10?3 mol/L). Another set of polymerizations were carried out at a constant initiator initial concentration of 2 × 10?3 mol/L and the monomer initial concentration was fixed at one of the following: 0.20, 0.30, 0.50, 0.70, or 1.00 (mol/L). The polymerization reactions were conducted isothermally at 70°C. The order with respect to initiator was consistent with the classical kinetic rate equation, while the order with respect to monomer was greater that unity. The effects of temperature on the polymerization rate were also investigated and the activation energy gave values of 20.66, 22.68, and 23.22 kcal mol?1 K?1 over a temperature range of 50–70°C. For the case of o‐methacryloylaminophenylarsonic acid monomer, its kinetic study was carried out in DMF as solvent and AIBN initiator. p‐Methacryloylaminophenylarsonic acid was too insoluble in DMF to be studied. The polymers obtained were characterized by H‐NMR, IR, and viscosity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1662–1669, 2004  相似文献   

18.
Graft polymerization of acrylic acid (AA) onto rice starch using postassium permanganate/acid redox system as initiator was investigated. When starch was reacted with KMnO4 solution, MnO2 was deposited onto starch. The dependence of MnO2 amount deposited was directly related to KMnO4 concentration. Subjecting the MnO2-containing starch to a solution consisting of monomer (AA) and acid (citric, tartaric, oxalic and hydrochloric acid) formed poly(AA)–starch graft copolymers. The graft yield, expressed as meq COOH/100 g starch, was measured by the amount of MnO2 deposited, AA concentration, material-to-liquor ratio, kind and concentration of acid, as well as temperature and duration. Finally, the newly prepared poly(AA)–starch graft copolymers were applied to cotton textiles to determine their suitability as sizing agents. The highest graft yield was obtained with citric acid and the least with hydrochloric acid, with tartaric and oxalic acid in between. The graft yield increased by increasing the concentration of acid to a certain concentration beyond which grafting leveled off. A similar trend was observed when the magnitude of grafting was related to the amount of MnO2 deposited. The graft yield increased by increasing the polymerization temperature from 30° to 50°C. Increasing the temperature to 60°C is accompanied by decreased grafting. On the other hand, fabric samples sized with poly(AA)–starch graft copolymers acquire higher tensile strength, elongation at break, and abrasion resistance than that sized with native rice starch, i.e., poly(AA)–starch graft copolymers serve as good sizing agents for cotton textiles. A tentative mechanism for grafting rice starch with AA using the KMnO4/acid redox system was elucidated. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The copolymerization of divinyl adipate (DVA) with isobutyl vinyl ether (IBVE) was conducted at 70 and 80 °C in benzene using azobisisobutyronitrile (AIBN), at a concentration as high as 0.50 mol l?1 as the initiator, where the concentrations of DVA and IBVE were 0.40 and 0.60 mol l?1, respectively. The copolymerization proceeded homogeneously, without any gelation, to yield soluble copolymers in spite of the high molar ratio of DVA as an excellent cross‐linker for IBVE. The copolymer yield increased with time, and the number‐average molecular weight (Mn = 0.9–2.4 × 104 g mol?1) from gel permeation chromatography (GPC) and molecular weight distribution (Mw/Mn = 1.5–7.6) of the resulting copolymer increased with copolymer yield. The cyanopropyl group, as a fragment of AIBN, was incorporated as a main constituent in the copolymer, the fraction of which increased from ca 10 to ca 20 % with copolymer yield, hence indicating that the copolymerization is an initiator–fragment incorporation radical polymerization. The copolymers also contained IBVE units (10–30 %) and DVA units with intact double bond (8–36 %) and without double bond (45 %). The intrinsic viscosity of the copolymer was very low (0.1 dl g?1) at 30 °C in tetrahydrofuran. The results from GPC–multi‐angle laser light scattering (MALLS), transmission electron microscopy (TEM) and MALLS revealed that individual copolymer molecules were formed as hyperbranched nanoparticles. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
Homogeneous graft copolymerization of acrylonitrile (AN) monomer onto high α‐cellulose was investigated in a lithium chloride/N,N‐dimethyl acetamide (DMAc/LiCl) solvent system. Benzoyl peroxide (BPO) and azobisisobutyronitrile (AIBN) were used as radical initiators. By varying temperature, time, and monomer concentrations in grafting reactions, the optimum conditions for both initiator systems were fixed. The graft yield for the AN–BPO system was higher than that for the AN–AIBN system. The optimum conditions of reactions were at temperatures of 70 and 60°C with initiator concentrations of 0.4% (0.36 mmol) and 2% (1.24 mmol) for the AN–AIBN and AN–BPO systems, respectively, at a monomer concentration of 5% (14.1 mmol) solution. The number of grafts per cellulose chain was in the range from 2.2 to 1.1 for AN–BPO and 0.5 to 2.1 for the AN–AIBN system. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 630–637, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号