首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The miscibility of the binary and ternary blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide), brominated polystyrene, and polystyrene was investigated using a differential scanning calorimeter. The morphology of these blends was characterized by scanning electron microscopy. These studies revealed a close relation between the blend structure and its mechanical properties. The compatibilizing effect of poly(2,6‐dimethyl‐1,4‐phenylene oxide) on the miscibility of the polystyrene/brominated polystyrene blends was examined. It was found that poly(2,6‐dimethyl‐1,4‐phenylene oxide), which was miscible with polystyrene and partially miscible with brominated polystyrene, compatibilizes these two immiscible polymers if its contention exceeds 33 wt %. Upon the addition of poly(2,6‐dimethyl‐1,4‐phenylene oxide) to the immiscible blends of polystyrene/brominated polystyrene, we observed a change in the morphology of the mixtures. An improvement in the mechanical properties was noticed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 225–231, 2000  相似文献   

2.
Phase diagrams of ternary blends of poly(phenylene ether) (PPE, Mn = 1.2 and 12 kg mol?1), polystyrene (PS, Mn = 22.5 kg mol?1), and diglycidyl ether of bisphenol A (DGEBA) were experimentally obtained in an extended range of temperatures and fitted with the Flory–Huggins model using three binary interaction parameters. A significant increase in miscibility together with the appearance of an immiscibility loop was found for PPEs with Mn values comprised in the range between 1 and 10 kg mol?1. This enables us to obtain initial homogeneous solutions in regions of high DGEBA concentrations, a possibility that was not previously reported for this ternary blend. This opens new possibilities for the toughening of epoxies replacing a single thermoplastic with a thermoplastic blend where both components (PS and PPE) are completely miscible. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1742–1747, 2006  相似文献   

3.
Star‐shaped macromolecules with six arms of polystyrene grafted onto a fullerene C60 core, or fullerene‐containing polystyrene (FPS), were used for the modification of poly(phenylene oxide) (PPO) and the preparation of a dense thin‐film membrane. The membrane structure was studied using scanning electron microscopy. The effect of FPS modifier on membrane density and mass transfer of methanol and ethylene glycol through the membrane was studied. Sorption and pervaporation tests were used to determine degree of sorption, diffusion coefficients, flux through the membrane and separation factor. In the pervaporation of a methanol–ethylene glycol mixture over the concentration range of 10–30 wt% methanol in the feed, all membranes showed high affinity to methanol. The separation factor reached a maximum at 5 wt% FPS in the membrane. The PPO/FPS membranes exhibit the best separation properties when the feed is enriched with ethylene glycol. © 2016 Society of Chemical Industry  相似文献   

4.
The morphology of nonisothermally crystallized poly(phenylene sulfide) (PPS) and its blend with poly (ether ether ketone) (PEEK) have been observed by polarized optical microscope (POM) equipped with a hot stage. The nonisothermal crystallization behavior of PPS and PEEK/PPS blend has also been investigated by differential scanning calorimetry (DSC). The maximum crystallization temperature for PEEK/PPS blend is about 15°C higher than that of neat PPS, and the crystallization rate, characterized by half crystallization time, of the PEEK/PPS blend is also higher than that of the neat PPS. These results indicate that the PEEK acts as an effective nucleation agent and greatly accelerates the crystallization rate of PPS. The Ozawa model was used to analyze the nonisothermal crystallization kinetics of PPS and its blends. The Avrami exponent values of neat PPS are higher than that of its blend, which shows that the presence of PEEK changed the nucleation type of PPS from homogeneous nucleation to heterogeneous nucleation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
6.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) is a chemically resistant polymer and, therefore, an attractive material for the formation of membranes. However, membranes of unmodified PPO prepared by an immersion precipitation possess very low hydraulic permeabilities at the filtration processes. The membranes with higher hydraulic permeabilities can be prepared from sulfonated PPO and/or from blends of unsulfonated PPO and sulfonated PPO. In conclusion, the mechanism of the formation of membranes from blends of unsulfonated PPO and sulfonated PPO is suggested. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 161–167, 1999  相似文献   

7.
The phase behaviour and morphology of injection moulded specimens of polysulphone (PSF) and poly(phenylene sulphide) (PPS) blends were studied by differential scanning calorimetry (d.s.c.), dynamical mechanical thermal analysis (d.m.t.a.) and transmission electron microscopy (TEM). The blends are phase separated regardless of the blend composition as revealed by d.s.c., d.m.t.a. and TEM. Upon annealing at 160°C for 2 h, d.m.t.a. results indicate that the PPS phase remains in the amorphous state at compositions <10%. At compositions between 20 and 35%, the PPS appears to be dispersed in a mixed mode of amorphous and crystalline domains. Above 35% the PPS phase appears to become fully crystallized upon annealing of the blends. At 10% PPS, TEM results showed 35–200 nm size dispersion both in the as-moulded and in the annealed specimens. At 20% the PPS phase varied widely in size, from 35 nm to tens of micrometres but remained as an included phase. TEM also revealed a compound morphology of the included phase at a composition of 50 wt% of each component.  相似文献   

8.
Crystallization and melting behaviors of poly(p‐phenylene sulfide) (PPS) in blends with poly(ether sulfone) (PES) prepared by melt‐mixing were investigated by differential scanning calorimetry (DSC). The blends showed two glass transition temperatures corresponding to PPS‐ and PES‐rich phases, which increased with increasing PES content, indicating that PPS and PES have some compatibility. The cold crystallization temperature of the blended PPS was a little higher than that of pure PPS. Also, the heats of crystallization and melting of the blended PPS decreased with increasing PES content, indicating that the degree of crystallinity decreased with an increase of PES content. The isothermal crystallization studies revealed that the crystallization of PPS is accelerated by blending PPS with 10 wt % PES and further addition results in the retardation. The Avrami exponent n was about 4 independent on blend composition. The activation energy of crystallization increased by blending with PES. The equilibrium melting point decreased linearly with increasing PES content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1686–1692, 1999  相似文献   

9.
New ion‐exchange acid/base‐blend (SPPO/PBI) membranes were prepared by mixing N,N‐dimethylacetamide (DMA) solutions of sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO) in the ammonium form and of polybenzimidazole (PBI), casting the solution as a thin film, evaporating the solvent, and treating the membrane with aqueous hydrochloric acid. The resulting membranes were found insoluble in DMA. The preliminary tests of the membranes were carried out in an H2/O2 fuel cell at room temperature. Their performance in the fuel cell increased with the increase in the concentration of SPPO sulfonic acid groups in the blend, but the membranes formed with the highly sulfonated SPPO alone or predominanting, which swelled excessively in water, did not give reproducible results, and their performance was usually inferior to that of the membranes having an optimum ratio of both components. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1118–1127, 2002  相似文献   

10.
Although the self‐condensing atom transfer radical polymerization (SCATRP) of inimers with typical comonomers has been extensively performed, there have been few reports to correlate the reactivity ratio with the growth of the molecular weights (MWs) and the development of branched structures. Thus, the SCATRP of inimers of different reactivity ratios, namely, 4‐chloromethylstyrene (CMS) and maleimide (MI) inimers, with a large excess of styrene (St) were carried out, respectively, to examine the effect. The conversion and MW were monitored by gas chromatography, gel permeation chromatography, and multiangle laser light scattering. The results suggested that CMS merely functioned as an initiator for St at the early stage; this led to linear macroinimers, which underwent SCATRP and gave rise to randomly branched polystyrene (PS) only at high conversion. The MI inimers formed charge‐transfer complexes with St and underwent the SCATRP to result in hyperbranched copolymers at first; this initiated the atom transfer radical polymerization of St and led to star‐shaped PS. With the objective of improving the processability and melt fluidity, the physical properties of poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) blends with linear, randomly branched, and star‐shaped PS were compared. In comparison with those with linear PS, the PPO/branched PS blends exhibited a higher glass‐transition temperature, a higher melt flow index, and a comparable thermal stability because of the spherical architecture of the branched PS. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The effects of heat treatment on the properties of membranes prepared from blends of poly(ether sulfone)/sulfonated poly(phenylene sulfide) (SPPS) and phenolphthalein poly(ether ether ketone)/SPPS were studied in detail. The membranes' fundamental properties, including water content, transport number, diffusion coefficient of electrolytes, flux, and so on, changed with both treated temperature and time, whereas the ion‐exchange capacity and electrical resistance remained approximately unchanged. The trends may have been due to the possible structural change resulted from the shrinking of the polymers forming the membranes. Furthermore, the membranes also retained a good physical appearance at temperatures below 220°C. Therefore, a series of heterogeneous membranes with desired conductivities and selectivities as well as proper water contents, which could satisfy different industrial purposes, such as electrodialysis, diffusional dialysis, and proton exchange, were achieved by simple heat treatment for a proper time and at a proper temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 494–499, 2005  相似文献   

12.
BACKGROUND: Charge storage capability is a fundamental property of polymers used in electromechanical transducer applications. In this work, the charge retention of ternary blends of poly(phenylene ether) and polystyrene modified with poly(styrene‐co‐acrylonitrile), polystyrene‐block‐poly(ethylene‐co‐butylene)‐block‐polystyrene or polystyrene‐block‐polyisobutylene‐block‐polystyrene (SIBS) triblock copolymers was correlated with the blend composition, final morphology and the chemical structure of the components. RESULTS: It was determined that the charge storage capability is favoured by a finely dispersed and non‐interconnected phase and can be reduced by high polarity or low molecular weight of the blend components. Additionally, the molecular weight and the amount of styrene of the copolymers also determined the phase morphology, which in turn affected the charge retention. The use of SIBS for the ternary blends, especially in small quantities, significantly improved the charge storage. As such, 100 µm films with a surface potential of about 400 V were able to retain up to 240 V (60%) after 24 h at 130 °C. CONCLUSION: The electret behaviour of the polymer blends was influenced by a complex relationship between chemical structure, molecular weight and phase morphology. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
M. -F. Cheung  A. Golovoy  H. van Oene 《Polymer》1990,31(12):2307-2310
This paper reports the mechanical behaviour of injection moulded blends of polysulphone (PSF) and poly(phenylene sulphide) (PPS). The blends prepared by melt-extrusion and subsequent injection moulding are phase separated. Depending on moulding conditions, thermal history, and composition, tensile behaviour ranged from brittle to ductile, with or without cold drawing. Cold drawing was observed in compositions as-moulded with up to 50% by weight PPS. Upon annealing for 2h at 160°C, ductile failure was maintained for blends containing up to 35% by weight PPS. All other compositions failed in brittle fashion. Flexural strength and modulus, before and after annealing, exhibited negative deviation from the rule of mixtures. All the blends were found to be notch sensitive.  相似文献   

14.
The effects of postindustry recycling of polymer blends composed of poly(phenylene ether) (PPE) on the properties of the PPE blends were investigated by simulated recycling with multiple molding cycles. Two compositions with different concentrations of PPE were reprocessed with an injection‐molding machine. Mechanical, thermal, rheological, and morphological characterizations were carried out on as‐produced and reprocessed samples to examine the influence of the number of molding cycles on the two specific PPE blends. Efforts were made to determine the effect of each molding cycle on the specific properties of the two PPE blends, including the Elastic (E), modulus, stress at break, strain at break, multiaxial impact, and melt viscosity. The results are discussed in detail. The retention of the properties correlated well with the unperturbed morphology of the compositions before and after recycling, as observed by transmission electron microscopy analyses on fractured tensile samples. However, more in‐depth microanalyses are required to identify the effect of recycling on the individual components present in the studied compositions. In this study, we aimed to establish structure–property relations upon recycling using several characterization techniques. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Low molar mass poly (phenylene ether) (LMW‐PPE) with phenol‐reactive chain ends was used as modifier of epoxy thermoset. The epoxy monomer was diglycidylether of bisphenol A (DGEBA), and several imidazoles were used as initiators of anionic polymerization. The curing and phase separation processes were investigated by different techniques: Differential Scanning Calorimetry, Size Exclusion Chromatography, and Light Transmission measurements. The final morphology of blends was observed by Environmental Scanning Electron Microscopy and Transmission Electron Microscopy. The epoxy network is obtained by imidazole initiated DGEBA homopolymerization. Initial LMW‐PPE/DGEBA mixtures show an UCST behavior with cloud point temperatures between 40 and 90°C. PPE phenol end‐groups can react with epoxy, leading to a better interaction between phases. The curing mechanism and phase separation process are not influenced by the chemical structure of initiators, except when reactive amine groups are present. The phase inversion is observed at 30 wt % of PPE. The mixtures with amine‐substituted imidazole present important differences in the initial miscibility and curing process interpreted in terms of fast room temperature amine‐epoxy reaction during blending. Final domain size is affected by this prereaction. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2678–2687, 2004  相似文献   

16.
Mechanical properties such as the tensile modulus, yield (break) strength, and elongation to break (or yield) are measured for multiphase poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) blends. Specimens with three different levels of thermal histories (quenched, as‐molded, and annealed) are prepared in order to study their effects on the mechanical properties of PEEK/PES blends. Synergistic behavior is observed in the tensile modulus and tensile strength of the blends in almost the whole range of compositions. The ductility of quenched blends measured as the elongation to break (yield) shows an unexpected synergistic behavior in the blend containing 90 wt % PEEK, although a negative deviation from additive behavior is observed in the rest of the compositions. A ductile–brittle transition is observed between 50 and 75 wt % PEEK in the blend. The ductile–brittle transition in as‐molded blends shifts to 75–90 wt % PEEK. Annealed blends show predominantly brittle behavior in the whole composition range. The experimental data are further correlated with the theoretically predicted results based on various composite models. Although the prediction based on these equations fails to fit the experimental data in the whole composition range, the simplex equations that are normally used for blends showing synergistic behavior produced a reasonable fit to the experimental data. The mechanical properties obtained for different blend compositions are further correlated with their morphology as observed by scanning electron microscopy. Morphological observation shows a two‐phase morphology in PES‐rich blends, which is an interlocked morphology in which the disperse phase is not clearly visible in PEEK‐rich blends, and a cocontinuous type of morphology for a 50/50 composition. Considerable permanent deformation of both the disperse and matrix phase, especially in the case of quenched tensile specimens, demonstrates the remarkable adhesion present between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2887–2905, 2003  相似文献   

17.
We present the first study and results on the preparation and characterization of montmorillonite clay filler based polymer blend nanocomposites of the miscible poly(phenylene oxide)/polystyrene blend. Intercalated nanocomposites, prepared by a melt‐processing method with 2–6 wt % commercially available organically modified sodium montmorillonite, have been characterized with wide‐angle X‐ray diffraction, transmission electron microscopy analysis, thermal analysis (thermogravimetric analysis and differential scanning calorimetry), and mechanical tensile tests. We show that nanocomposites can be successfully prepared in a batch mixer at temperatures much below the conditions conventionally used for this blend without organic degradation. Thermal stability is enhanced by nanoscale hybrid formation. The level of intercalation (change in the d‐spacing) does not change with the clay loading. Better dispersion of clay in the blend matrix has been observed at a low level of clay content. The nanocomposites show improved tensile modulus (by 31%) in comparison to the blend, whereas the tensile strength (stress at break) and elongation decrease in the presence of the filler with an increase in the clay loading. The Halpin–Tsai model is able to predict the modulus of the nanocomposites in very good agreement with the experimental data. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
The crystallization and melting behavior of poly(ether ether ketone) (PEEK) in blends with poly(aryl ether sulfone) (PES) prepared by melt mixing are investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS). The presence of PES is found to have a notable influence on the crystallization behavior of PEEK, especially when present in low concentrations in the PEEK/PES blends. The PEEK crystallization kinetics is retarded in the presence of PES from the melt and in the rubbery state. An analysis of the melt crystallization exotherm shows a slower rate of nucleation and a wider crystallite size distribution of PEEK in the presence of PES, except at low concentrations of PES, where, because of higher miscibility and the tendency of PES to form ordered structures under suitable conditions, a significantly opposite result is observed. The cold crystallization temperature of the blends at low PES concentration is higher then that of pure PEEK, whereas at a higher PES concentration little change is observed. In addition, the decrease in heat of cold crystallization and melting, which is more prevalent in PEEK‐rich compositions than in pure PEEK, shows the reduction in the degree of crystallinity because of the dilution effect of PES. Isothermal cold crystallization studies show that the cold crystallization from the amorphous glass occurs in two stages, corresponding to the mobilization of the PEEK‐rich and PES‐rich phases. The slower rate of crystallization of the PEEK‐rich phase, even in compositions where a pure PEEK phase is observed, indicates that the presence of the immobile PES‐rich phase has a constraining influence on the crystallization of the PEEK‐rich phase, possibly because of the distribution of individual PEEK chains across the two phases. The various crystallization parameters obtained from WAXS analysis show that the basic crystal structure of PEEK remains unaffected in the blend. Further, the slight melting point depression of PEEK at low concentrations of PES, apart from several other morphological reasons, may be due to some specific interactions between the component homopolymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2906–2918, 2003  相似文献   

19.
Blends of two biodegradable semicrystalline polymers, poly(p‐dioxanone) (PPDO) and poly(vinyl alcohol) (PVA) were prepared with different compositions. The thermal stability, phase morphology and thermal behavior of the blends were studied by using thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). From the TGA data, it can be seen that the addition of PVA improves the thermal stability of PPDO. DSC analysis showed that the glass transition temperature (Tg) and the melting temperature (Tm) of PPDO in the blends were nearly constant and equal to the values for neat PPDO, thus suggesting that PPDO and PVA are immiscible. It was found from the SEM images that the blends were phase‐separated, which was consistent with the DSC results. Additionally, non‐isothermal crystallization under controlled cooling rates was explored, and the Ozawa theory was employed to describe the non‐isothermal crystallization kinetics. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
BACKGROUND: Poly(para‐dioxanone) (PPDO) is a biodegradable polyester with excellent biodegradability, bioabsorbability, biocompatibility and mechanical flexibility. However, its high cost and relatively fast degradation rate have hindered the development of commercial applications. Blending with other polymers is a simple and convenient way of modifying the properties of aliphatic polyesters. Poly(D ,L ‐lactide) (PDLLA) is another polyester that has been extensively studied for biomedical applications due to its biocompatibility and suitable degradation rate. However, to our knowledge, blends of PPDO/PDLLA have not been reported in the literature. RESULTS: A series of biodegradable polymers were blended by solution co‐precipitation of PPDO and PDLLA in various blend ratios. The miscibility, morphology and thermal properties of the materials were investigated. DSC curves for all blends revealed two discrete glass transition temperatures which matched the values for pure PPDO and PDLLA. SEM images of fracture surfaces displayed evidence of phase separation consistent with the DSC results. The contact angles increased with the addition of PDLLA. CONCLUSION: PPDO/PDLLA blends exhibit two distinct glass transition temperatures that remain nearly constant and correspond to the glass transition temperatures of the homopolymers for all blend compositions, indicating that blends of PPDO and PDLLA are immiscible. Images of the surface obtained using SEM were also suggestive of a two‐phase material. The crystallinity of the PPDO phase in the blends was affected by the PDLLA content. The mechanical properties of the blends changed dramatically with composition. Adding PDLLA makes the blends less hydrophilic than PPDO. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号