首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(vinyl alcohol) (PVA) having a number‐average degree of polymerization of 7000 was obtained from the poly(vinyl acetate) (PVAc) having a number‐average degree of polymerization 9000, a product of photo‐induced emulsion polymerization of vinyl acetate (VAc), carried out at 0°C, using poly(oxyethylene)10 nonyl phenyl ether ammonium sulfate as an anionic emulsifier. It was found that 100% conversion is always attained in the whole range of the investigation and the emulsifier plays an important role in the initiation process. The applicability of the photo‐induced emulsion polymerization system to a relatively large‐scale production was tested by using an apparatus equipped with an internal high‐pressure Hg lamp with a capacity of several hundred grams per batch under nitrogen atmosphere. It was found that both the rate of polymerization and the degree of polymerization of resulting polymers are slightly lower than those obtained from corresponding small‐scale polymerizations prepared on a high vacuum system because of the presence of oxygen. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2425–2431, 2002  相似文献   

2.
Vinyl acetate (VAc) was solution‐polymerized at 40°C and 50°C using 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as an initiator and methanol as a solvent, and effects of polymerization temperature and initiator concentration were investigated in terms of conversion of VAc into poly (vinyl acetate) (PVAc), degree of branching (DB) for acetyl group of PVAc, and molecular weights of PVAc and resulting poly(vinyl alcohol) (PVA) obtained by saponifying with sodium hydroxide. Slower polymerization rate by adopting ACVA and lower viscosity by methanol proved to be efficient in obtaining linear high‐molecular‐weight (HMW) PVAc with high conversion and HMW PVA. PVA having maximum number–average degree of polymerization (Pn) of 4300 could be prepared by the saponification of PVAc having maximum Pn of 7900 polymerized using ACVA concentration of 2 × 10?5 mol/mol of VAc at 40°C. Moreover, low DB of below 1 could be obtained in ACVA system, nevertheless of general polymerization temperatures of 40°C and 50°C. This suggests an easy way for producing HMW PVA with high yield by conventional solution polymerization without using special methods such as low‐temperature cooling or irradiation. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 4831–4834, 2006  相似文献   

3.
High-molecular weight (HMW) poly(vinyl alcohol) (PVA) was prepared via an emulsifier-free emulsion polymerization of vinyl acetate (VAc) using a redox initiation system in low temperatures, and the subsequent saponification with potassium hydroxide in methanol. The effect of the polymerization conditions on the conversion, molecular weight, and branching degree was investigated. PVA with maximum viscosity-average degree of polymerization (DP) of 8270 could be prepared by saponification of poly(vinyl acetate) (PVAc), with DP of 10,660 obtained at temperature of 10°C, monomer concentration of 30%, potassium persulfate molar ratio to monomer of 1/2000, agitation speed of 160 rpm. The conversion was above 90%. From the emulsifier-free emulsion polymerization of VAc in low temperature, PVAc with HMW and high linearity was effectively prepared, which might be useful for the preparation of high-strength and high-modulus PVA fiber. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
To prepare high molecular weight (HMW) poly(vinyl pivalate) (PVPi) with high yield and high linearity which is a promising precursor for syndiotactic poly (vinyl alcohol) (PVA), vinyl pivalate (VPi) was emulsion polymerized, using 2,2′‐azobis(2‐amidinopropane) dihydrochloride (AAPH) as an initiator and sodium dodecyl sulfate (SDS) as an emulsifier. The effect of the polymerization conditions on the conversion, molecular weight, and degree of branching was investigated. PVA with maximum number‐average degree of polymerization (Pn) of 6200 could be prepared by complete saponification of PVPi, with Pn of 13,300–16,700 obtained at polymerization temperature of 50°C, using SDS and AAPH concentration of 2.0 × 10?3 mol/L of water and 1.0 × 10?3 mol/L of water, respectively, and the maximum conversion was about 90%. From the emulsion polymerization of VPi, spherical PVPi with high yield was effectively prepared, which might be useful for the precursor of syndiotactic PVA micro‐ and nano‐spheres with various surface properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 410–414, 2007  相似文献   

5.
《国际聚合物材料杂志》2012,61(1-2):181-194
Abstract

Vinyl acetate (VAc) was bulk-polymerized at 30, 40 and 50°C using a low temperature initiator, 2,2′-azobis(2,4-dimethylvaleronitrile) (ADMVN), and effects of polymerization temperature and initiator concentration were investigated in terms of polymerization behavior and molecular structures of poly(vinyl acetate) (PVAc) and corresponding poly(vinyl alcohol) (PVA) obtained by saponifying it with sodium hydroxide. Low polymerization temperature and low conversion by adopting ADMVN proved to be successful in obtaining PVA of high molecular weight. PVAc having number-average degree of polymerization (Pn ) of 6,800–10,100 was obtained, whose degree of branching for acetyl group of 0.6–0.7 at 30°C, 0.8–1.1 at 40°C, and 1.0–1.9 at 50°C at conversion of below 40%. Saponifying so prepared PVAc yielded PVA having Pn of 3,100–6,200, and syndiotactic diad (S-diad) content of 51–53%. The whiteness, S-diad content, and crystal melting temperature were higher with PVA prepared from PVAc polymerized at lower temperatures.  相似文献   

6.
Studies have been made of the γ-induced emulsion polymerization of styrene and comparisons made with chemically initiated emulsion polymerization. The polymerization proceeded smoothly to high conversions at 0 and 60°C, the reaction showing a high G (monomer) value. Complete conversions were obtained with total doses of less than 0.05 Mrad. In accordance with the behavior expected of systems having a constant rate of initiation, the molecular weight was found to decrease with decreasing temperature. The molecular weight and particle size distributions were narrower than those obtained in chemically initiated emulsion polymerizations at the same temperature. The radiation-induced emulsion polymerization of vinyl acetate proceeded smoothly at temperatures in the range 0–50°C to give polymers of much higher molecular weight than these obtained from chemically initiated polymerizations at the same temperature. Complete conversion was attained after a dose of 0.02 Mrad for latices approaching 50% solids. The elimination of ionic endgroups in the poly(vinyl acetate) radicals tends to drive the polymerization from the aqueous phase, resulting in faster rates and higher molecular weights than are obtained from chemically initiated systems. Rates of polymerization were found to be independent of temperature and the molecular weight of the polymer to be independent of dose rate. Latices of poly(vinyl acetate) of high solids content were evaluated for latex and film properties and found to have improvements over commercially available samples in both areas, especially in clarity of film and scrub resistance. A number of acrylate and maleate esters were copolymerized with vinyl acetate in a radiation-initiated emulsion system. High molecular weight copolymers were produced after low dose.  相似文献   

7.
A noncombustible tough poly(vinyl chloride) (tPVC) was prepared by suspension‐grafted copolymerization of poly(2‐ethylhexyl acrylate) (poly‐EHA; elastomer) with vinyl chloride (VC). Elastomer (poly‐EHA) was prepared by emulsion, mainly homopolymerization of 2‐ethylhexyl acrylate at a temperature of 30 ± 0.1°C in the presence of a redox system and with the advantage of dosing the monomer into two portions. Grafted‐suspension copolymerization of poly‐EHA with VC was carried out at 54 ± 0.1°C, keeping other reaction conditions only slightly modified in comparison with those for the polymerization of pure VC. An optimum content of the incorporated poly‐EHA in PVC was found to be in the range 7.5–8.5 wt %, whereas notched toughness of 85–87 kJ m?2 was reached. Both below and above the found range of the content of poly‐EHA, the toughness decreases. A copolymer prepared by a direct‐emulsion copolymerization of 2‐EHA and VC (poly‐EHA‐co‐VC) exhibited worse mechanical properties than the copolymer prepared by two polymerization steps. On the basis of experimental results, effects of the reaction procedure on the properties of resulting material are described. In addition to good mechanical properties, tPVC also shows its noncombustibly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2355–2362, 2002  相似文献   

8.
To prepare high molecular weight (HMW) poly(vinyl acetate) (PVAc) with high yield and high linearity as a precursor of HMW poly(vinyl alcohol) (PVA), vinyl acetate (VAc) was emulsion polymerized using, azo initiator, 2,2′‐azobis(2‐amidinopropane) dihydrochloride (AAPH). This was compared with the polymerization using potassium peroxodisulfate (KPS) as an initiator at various polymerization conditions. PVA, having a maximum number average degree of polymerization (Pn) of 3500 was obtained by the saponification of PVAc with Pn of 13,000–14,000, degree of branching (DB) for the acetyl group of about 3.4–3.5, and a maximum conversion of VAc into PVAc of 95%, which was polymerized by AAPH. These numerical values were superior compared with 14,500–15,000 of Pn of PVAc, obtained by KPS, and 3100 of maximum Pn of resulting PVA, DB of about 3.7–3.8, and maximum conversion of 90%. From the foregoing experimental results, we found that AAPH was a more efficient initiator than KPS in increasing both conversion of PVAc and molecular weight of PVA. In addition, PVAc microspheres, obtained by these emulsion polymerizations, can be converted to PVA / PVAc shell / core microspheres through a series of surface‐saponifications, maintaining their spherical morphology. Various surface morphologies, such as flat or wrinkled and swellable or nonswellable ones formed by the various molecular parameters and saponification conditions, were examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2356–2362, 2004  相似文献   

9.
Poly(vinyl acetate) latices were prepared in the presence of an ammonium persulfate initiator, 10–50 mol of an ethoxylated nonylphenol nonionic emulsifier, and a poly(vinyl alcohol) colloid stabilizer by applying semicontinuous emulsion polymerization (delayed monomer and initiator addition process) in a laboratory scale similar to industrial practice. Two approaches were applied: the molar concentration of the nonionic emulsifier was kept constant and the weight ratios in the polymerization recipe varied or the weight ratios were kept constant. The effects of the change in the ethoxylation degree of the emulsifier to the final latex viscosity, average polymer molecular weight, polymer grafting degree, surface tension of the latex, and the surface free energy of the dried films were investigated. It was determined that the resultant latex viscosity decreases and the viscosity‐average polymer molecular weight increases with increase of the nonionic emulsifier ethoxylation degree. The increase of the ethoxylation degree does not seriously affect the surface tension of the resultant latex or the surface free energy of the dried poly(vinyl acetate) films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 844–851, 2002  相似文献   

10.
Poly(vinyl alcohol) (PVA) was prepared by emulsion polymerization of vinyl acetate (VAc) at 40, 50, and 60°C. PVAs of various molecular parameters were dissolved in water at concentrations of 3, 5, and 7% (g/dL) and aged at 30 and 60°C. The effects of the molecular weight and polymerization temperature on the viscosity fluctuation and gelation behavior of aqueous PVA solutions were investigated. Viscosity was increased with increasing molecular weight when other parameters were held the same. PVA of superior molecular regularity due to the lower polymerization temperature of VAc had higher relative viscosity. Viscosity and its fluctuation of PVAs with aging time varied with the polymerization temperature of the precursors, concentration of the aqueous solutions, and aging time. For PVA with a number‐average degree of polymerization of 2800 prepared from poly(vinyl acetate) polymerized at 40°C, a sharp increase in viscosity was observed after 500 min of aging at a concentration of 7%. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1897–1902, 2001  相似文献   

11.
Crosslinking and decrosslinking reactions of poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) using an alternating copolymer of maleic anhydride and 2,4‐dimethyl‐1,3‐pentadiene (PMAD) as the polyfunctional crosslinker and subsequent ozone degradation are reported. PVA and PVAc are heated at 200 °C for 0.5 to 3 h in the presence of 5 to 30 wt % of PMAD in the solid state to obtain the corresponding crosslinked polymers. The reactions of a hydroxy group of PVA and an acetate group of PVAc with an anhydride group of PMAD slowly proceed to give insoluble polymers with a loose crosslinking structure. Almost no change in the thermal decomposition temperatures and the IR spectra is observed during the crosslinking reactions. The crosslinked PVA produces hydrogels with a high swelling ratio of 500 to 1700%, which are readily degradable during a reaction with ozone in water at 0 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44229.  相似文献   

12.
A new redox initiation system, potassium persulfate/N,N‐dimethylethanolamine, was used to initiate traditional radical emulsion polymerization of vinyl acetate at low temperature. Polymers were characterized using gel permeation chromatography, scanning electron microscopy and dynamic light scattering. The results showed that poly(vinyl acetate) with high molar mass and small dispersity (?) was successfully synthesized. © 2016 Society of Chemical Industry  相似文献   

13.
Well‐defined poly(vinyl acetate‐b‐methyl methacrylate) block copolymers were successfully synthesized by the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in p‐xylene with CuBr as a catalyst, 2,2′‐bipyridine as a ligand, and trichloromethyl‐end‐grouped poly(vinyl acetate) (PVAc–CCl3) as a macroinitiator that was prepared via the telomerization of vinyl acetate with chloroform as a telogen. The block copolymers were characterized with gel permeation chromatography, Fourier transform infrared, and 1H‐NMR. The effects of the solvent and temperature on ATRP of MMA were studied. The control over a large range of molecular weights was investigated with a high [MMA]/[PVAc–CCl3] ratio for potential industry applications. In addition, the mechanism of the polymerization was discussed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1089–1094, 2006  相似文献   

14.
Atactic poly(vinyl alcohols) (a‐PVAs) having number‐average degrees of polymerization [(Pn)s] of 1700 and 4000 were prepared by the solution polymerization of vinyl acetate, which was followed by the saponification of poly(vinyl acetate) to investigate the effects of molecular weights of a‐PVA on the characteristics of electrospun a‐PVA nanofabrics. A‐PVA nanofabrics were prepared by electrospinning with controlling the process parameters including the electrical field, conductivity, tip‐to‐collector distance, and solution concentration. Through a series of characterization experiments, we identified that the molecular weight of a‐PVA had a marked influence on the structure and properties of nanofabrics produced. That is, the higher the molecular weight of PVA, the superior the physical properties of PVA nanofabric. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1638–1646, 2004  相似文献   

15.
This study presents the experimental study of semibatch emulsion and miniemulsion copolymerization of vinyl acetate (VAc) and ethylene to vinyl acetate-ethylene (VAE) copolymer at 60°C and 80–300 psig. In the miniemulsion copolymerization, a water-soluble initiator (K2S2O8) is used and VAc miniemulsion is prepared in presence of surfactant and cosurfactant using a sonicator or a high-shear homogenizer. Then, ethylene gas is supplied to the reactor at constant partial pressure. In a miniemulsion process, the mass transfer limitations of VAc from monomer droplets to the aqueous phase, and to micelles or polymer latex particles that are present in conventional macro-emulsion polymerization can be eliminated and the transfer of ethylene dissolved in the aqueous phase to the miniemulsion droplets is the major ethylene transport process for the polymerization. The experimental data show that the amount of ethylene incorporation into the copolymer is higher in miniemulsion polymerization than in emulsion polymerization. The ethylene pressure has been found to have a strong impact on the ethylene incorporation into the copolymer phase in both emulsion and miniemulsion copolymerizations but the increase is more pronounced in miniemulsion case. The VAE copolymer latex particles prepared by miniemulsion polymerization exhibited higher storage stability than those prepared by macro-emulsion polymerization.  相似文献   

16.
Polystyrene/poly(vinyl acetate) latex nanoparticles with a core–shell morphology in an emulsifier‐free emulsion polymerization system were prepared with purified styrene and vinyl acetate (VAc) as monomers and 2,2′‐azo bis(2‐amino propane) dihydrochloride (ABA,2HCl) as the initiator and emulsifier. The optimized conditions of polymerization of VAc, on top of the already‐formed polystyrene as a core polymer, with a core–shell morphology were obtained using various parameters such as volume ratio of the first and second stages, type of process, and reaction time. The morphologic structure of the nanoparticles was studied by scanning electron microscopy and transmission electron microscopy. The latex nanoparticles and polymers were characterized by differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2409–2414, 2006  相似文献   

17.
The reversible addition‐fragmentation chain transfer (RAFT) polymerization of chloroprene (CP) in an emulsion system using a dithiocarbamate‐type RAFT agent was studied. The controlled RAFT‐mediated emulsion polymerization was achieved by the appropriate combination of a RAFT agent and nonionic surfactant (polyoxyethylene phenyl ether) using a water‐soluble initiator (VA‐044) at 35 °C. An almost linear first‐order kinetic plot was observed until relatively high conversion (>80%) with molecular weights between 22,300 and 33,100 and relatively narrow molecular weight distributions (Mw/Mn ≦ 1.5) were achieved. The amount of the emulsifier used and the pH of the system were found to affect the controlled character, polymerization rate, and induction period, which are related to the size of the emulsion particles. Large‐scale RAFT‐mediated emulsion polymerization was also employed to afford industrially applicable poly(CP) (Mw > 25 × 104, resulting product > 2300 g). The vulcanized CP rubber obtained from the RAFT‐synthesized poly(CP) exhibited better physical properties, particularly tensile modulus and compression set, which may be due to the presence of the reactive end groups and the absence of low‐molecular‐weight products. We also evaluated the impact of the chain‐end structure on the mechanical and physical properties of these industrially important CP rubbers with carbon black. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46008.  相似文献   

18.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and 1‐vinyl‐2‐pyrrolidone (VP) were prepared by radical polymerization using 2,2‐dimethyl‐2‐phenylacetophenone (DMPAP) and methylene bisacrylicamide (MBAAm) as initiator and crosslinker, respectively. The thermal characterization of the IPNs was investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dielectric analysis (DEA). Depressions of the melting temperatures of PVA segments in IPNs were observed with increasing VP content via the DSC. The DEA was employed to ascertain the glass transition temperature (Tg) of IPNs. From the result of DEA, IPNs exhibited two Tgs indicating the presence of phase separation in the IPN. The thermal decomposition of IPNs was investigated using TGA and appeared at near 270°C. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1844–1847, 2002  相似文献   

19.
Emulsion polymerization of vinyl acetate was carried out batchwisely or semicontinuously in the presence of a nonionic surfactant or poly(vinyl alcohol) (PVA). From the investigation of degrees of polymerization of poly(vinyl acetate) (PVAc) during the course of polymerization and those of corresponding hydrolyzed PVA, it was clarified that the degrees of polymerization of the batchwise system are much larger than those of the semicontinuous system, and long branches and shorter branches are formed in the batchwise and the semicontinuous systems, respectively. The emulsion films obtained batchwisely had properties with better tensile strengths by two to four times (nonionic system) and 1.5 times (PVA system) than those obtained semicontinuously. The former films revealed a better water-resistant nature compared with the latter films. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
This study concerns the living cationic polymerization of two vinyl ethers (VEs) having pendant glucose residues, in which the hydroxyl groups are protected by acetyl and isopropylidene functions. Living cationic polymerization of VE having an acetyl‐protected glucose was achieved by employing an initiating system consisting of the CF3COOH adduct of isobutyl VE (IBVE) and ethylaluminium dichloride in the presence of an added base at 0 °C. In contrast, the use of the HCl adduct of IBVE in conjunction with zinc iodide at ?15 °C was more suitable for the controlled polymerization of VE having an isopropylidene‐protected glucose. Polymers obtained under these reaction conditions had narrow molecular weight distributions (Mw/Mn ~ 1.1) and controlled molecular weights. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号