首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graft copolymer of oleic acid (OA) onto low‐density polyethylene (LDPE) was prepared using dicumyl peroxide (DCP) as an initiator in the molten state. The grafting was carried out in a Haake rheometer. The effects of the reaction time and the amount of DCP and the monomer on the percentage of grafting were studied. The rheological behavior and the melt‐flow rate of the graft copolymer (LDPE‐g‐OA) were also investigated. FTIR spectroscopy and a mass spectrum were used to characterize the structure of LDPE‐g‐OA. The experimental results showed that when the OA amount was 10 wt % and the DCP amount was 0.4 wt % based on the LDPE the percentage of grafting of LDPE‐g‐OA, prepared by maintaining the temperature at 170°C and the roller speed at 80 rpm, was about 6 wt %. It was found that both LDPE and LDPE‐g‐OA were pseudoplastic fluids. OA was grafted onto LDPE in the form of a monomer and a dimer. The grafted LDPE is expected to act as a compatibilizer between starch and polyethylene. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3299–3304, 2003  相似文献   

2.
The free‐radical graft copolymerization of maleic anhydride (MAH) onto highly reactive low molecular weight polyisobutylene was conducted by the use of benzoyl peroxide as an initiator through the solvothermal method. Fourier transform infrared spectra and 1H‐NMR spectra confirmed that maleic anhydride was successfully grafted onto highly reactive low molecular weight polyisobutylene backbone, and the grafting mechanism also was proposed. The effect of benzoyl peroxide content, MAH concentration, total reactant amount in the reaction vessels, reaction temperature and time, and different kinds and volumes of solvents on MAH's degree of grafting was investigated in detail. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Hydrosoluble copolymers containing sulfonic acid groups incorporated into a macromolecule were synthesized. The group of polymers studied was obtained by free radical solution polymerization, using potassium persulfate as an initiator. The copolymerization of the monomers 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS) and acrylamide (AA) was carried out at different pH values of the reaction medium of the monomer mix. The copolymers were characterized by proton nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The viscosity behavior of the copolymers in NaCl solution showed a dependency on the pH of the reaction medium, with higher pH leading to lower viscosities. The acidic conditions of this medium affect the initiator decomposition rate, which is a probable cause of the viscosity variation, and the extent of decomposition increases with increasing pH. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 192–198, 2003  相似文献   

4.
In this article, we report that thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAAm) was successfully grafted onto a cotton fabric (CF) surface by free‐radical solution grafting polymerization; we obtained a thermoresponsive CF‐grafted PNIPAAm. This reaction system only contained four constituents: the monomer, solvent, initiator, and CFs. Ammonium peroxydisulfate was chosen as the initiator, and water was chosen as the solvent. A series of initiator concentrations and grafting polymerization temperatures were used in the experiments, and their effects on the grafting ratio (G) were also studied. Also, the effects of the G of CF‐g‐PNIPAAm on their corresponding thermoresponses was studied further. The structure of CF‐g‐PNIPAAm was characterized by Fourier transform infrared spectroscopy–attenuated total reflectance analysis and scanning electron microscopy analysis. The G of CF‐g‐PNIPAAm was measured by a gravimetric method. The thermoresponse of CF‐g‐PNIPAAm was characterized by modulated differential scanning calorimetry, water contact angle measurements, and wetting time measurements. The experiments manifested the following results: (1) the initiator concentration and grafting polymerization temperature both influenced G, (2) the grafted PNIPAAm covered the CF surface, (3) the CF‐g‐PNIPAAm showed thermoresponsive hydrophilicity/hydrophobicity, and (4) a relationship existed between the thermoresponse of CF‐g‐PNIPAAm and the corresponding G. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41193.  相似文献   

5.
In this study, grafting of acrylic acid (AA) onto metallocene‐based polyethylene‐octene elastomer (POE) was investigated by using benzoyl peroxide as an initiator. Grafted product was characterized by using Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X‐ray diffraction spectroscopy, and differential scanning calorimetry (DSC). Both the grafting percentage and the gel yield, at equilibrium, were higher for POE containing lower degree of comonomer content. In all cases, the crosslinking reaction was accompanied by the predominant graft reaction due to the competition of POE macroradical and excited AA. From the result of DSC and X‐ray characterizations, it was found that the change of crystallinity is slight when the gel is removed from POE‐g‐AA copolymers. It was also proven that the effect of gel formation on the properties of the copolymer could be neglected because of the low gel yield. So, the graft method proposed in this article can produce low gel yield copolymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2905–2912, 2002  相似文献   

6.
We modified hydrophobic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBHV) films with hydrophilic chains to control their surface properties. We designed and investigated surface‐initiated atom transfer radical polymerization (SI‐ATRP) to modify the PHBHV films by grafting poly(2‐hydroxyethyl methacrylate) (PHEMA) from the surface. This method consisted of two steps. In the first step, amino functions were formed on the surface by aminolysis; this was followed by the immobilization of an atom transfer radical polymerization initiator, 2‐bromoisobutyryl bromide. In the second step, the PHEMA chains were grafted to the substrate by a polymerization process initiated by the surface‐bound initiator. The SI‐ATRP technique was expected to favor a polymerization process with a controlled manner. The experimental results demonstrate that the grafting density was controlled by the reaction conditions in the first step. The grafted films were analyzed by Fourier transform infrared spectroscopy, contact angle testing, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The results show that grafted chains under the SI‐ATRP method were preferentially located on the surface for surface grafting and in the bulk for conventional free‐radical polymerization initiated by benzoyl peroxide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The effects of linear low density polyethylene (LLDPE) grafting with vinyltrimethoxysilane by different types and contents of peroxide were studied. When grafting silane onto LLDPE, with 0.10 phr of Dicumyl peroxide (DCP) or 0.05 phr content of 2,5‐Dimethyl‐2,5‐di (tert‐butyl‐peroxy)‐hexane (DHBP), it was found that the grafting effect was improved; however, as Di(2‐tert‐butylperoxypropyl ‐(2))‐benzene (DIPP) or excess DHBP was used, LLDPE was supposed to cause self‐crosslinking, which reduced the grafting effect of silane and was invalid in the processing of extrusion. In this study, vinyl trimethoxysilane (VTMS) was grafted onto various polyethylenes (HDPE, LLDPE, and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to crosslink utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to crosslink during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for crosslinked LDPE and LLDPE. Mechanical and thermal properties of the crosslinked PE are much better than that of uncrosslinked PE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2383–2391, 2005  相似文献   

8.
Graft copolymerization onto silk (Bombyx mori) was carried out with vinyl monomers (methyl methacrylate and acrylamide) and initiated by a semiconductor‐based photocatalyst (cadmium sulfide). The utility of a semiconductor as an initiator in free‐radical photografting and the effects of ethylene glycol and triethylamine with cadmium sulfide on graft copolymerization were explored. Depending on the reaction conditions, 10–48% grafting with methyl methacrylate and 4–26% grafting with acrylamide were achieved. The reaction conditions were optimized, and the grafted fibers were characterized with scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry analysis, and tensile strength measurements. The chemical resistance and water absorption of the grafted fibers were compared with those ungrafted fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
In this study, polymer–clay nanocomposites (PCNs) composed of poly(vinyl alcohol)s (PVAs), poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid), and fullers earth were prepared by the effective dispersal of inorganic nanoclays in the organic PVA matrix via in situ free‐radical polymerization with potassium persulfate as an initiator and N,N‐methylene bisacrylamide as a crosslinker. The monomer, 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid, was grafted onto the PVA backbone, and at the same time, fullers earth layers were intercalated and exfoliated into the grafted copolymer, especially at a low or moderate loading of the fullers earth. The synthesized PCN materials were characterized by Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction techniques. The morphological features of the synthesized materials were studied by scanning electron microscopy; this revealed that the swelling ratio of this nanocomposite increased with increasing fullers earth content. The X‐ray diffraction results indicated that the fullers earth was exfoliated in the nanocomposite matrix, and its introduction into the polymer matrix enhanced the percentage crystallinity of the polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
A series of biopolymer‐based superabsorbent hydrogels based on carboxymethyl cellulose has been prepared by free‐radical graft copolymerization of acrylamide and 2‐acrylamido‐2‐methylpropan sulfonic acid (AMPS) in aqueous solution using methylenebisacrylamide as a crosslinking agent and ammonium persulfate as an initiator. The effect of variables on the swelling capacity such as: acrylamide/AMPS weight ratio, reaction temperature, and concentration of the initiator and crosslinker were systematically optimized. The results indicated that with increasing the amount of AMPS, the swelling capacity is increased. FT‐IR spectroscopy and scanning electron microscope analysis were used to confirm the hydrogel structure. Swelling measurements of the synthesized hydrogels in different salt solutions indicated considerable swelling capacity. The absorbency under load of the superabsorbent hydrogels was determined by using an absorbency under load tester at various applied pressures. A preliminary swelling and deswelling behaviors of the hydrogels were also studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
8‐hydroxy‐5‐azoquinolinephenylacrylate‐formaldehyde (8H5AQPA‐F) macromonomer was prepared from acryloylchloride, with condensation products of 8‐hydroxy‐5‐azoquinolinephenol‐formaldehyde, and polymerized in DMF at 70°C using benzoyl peroxide as free radical initiator. Poly(8H5AQPA‐F) was characterized by infrared and nuclear magnetic resonance spectroscopic techniques. Polychelates were obtained in alkaline solution of polymeric ligand, with the aqueous solution of Cu(II) and Ni(II). Elemental analysis of polychelates suggests that the metal to ligand ratio is about 1:2. The polymer metal complexes were also characterized by IR, XRD, magnetic moments, and thermal analysis. The effects of pH and electrolyte on the metal uptake behavior of the resin were also studied. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 797–802, 2007  相似文献   

12.
The graft crosslinking polymerization of 4‐tert‐butylstyrene (tBS) and divinylbenzene (DVB) onto ethylene–propylene–diene (EPDM) was carried out in toluene by using benzoyl peroxide (BPO) as an initiator. The synthesized graft terpolymer, tBS‐EPDM‐DVB (PBED), was extracted with tetrahydrofuran (THF) into gel (called as PBED I) and sol, and then they were identified by infrared (IR) spectroscopy. The effects of solvent amount, molar ratio of DVB to tBS, EPDM content, initiator concentration, reaction temperature, and reaction time on the graft crosslinking polymerization were examined. Among them, solvent amount and molar ratio of DVB to tBS were the important factors for this reaction system. Maximum oil absorbency of PBED I was 84.0 g/g but its oil‐absorption kinetic rate was very low. Sol PBED can be reused as oil absorbent (named as PBED II) through photocrosslinking by ultraviolet light irradiation. Although the oil absorbencies of PBED II were lower than those of PBED I in most cases, their oil absorption kinetic rates were higher than oil absorbencies of PBED I. The highest value of oil absorbency of PBED II was 56.0 g/g. The thermal stability of PBED I was studied by TGA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2119–2129, 2002  相似文献   

13.
Biodegradable and biocompatible copolymeric hydrogels based on sucrose acrylate, N‐vinyl‐2‐pyrrolidinone, and acrylic acid were designed and synthesized. Because of the growing importance of sugar‐based hydrogels as drug delivery systems, these new pH‐responsive sucrose‐containing copolymeric hydrogels were investigated for oral drug delivery. The sucrose acrylate monomer was synthesized and characterized. The copolymeric hydrogel was synthesized by free‐radical polymerization. Azobisisobutyronitrile (AIBN) was the free‐radical initiator employed and bismethyleneacrylamide (BIS) was the crosslinking agent used for hydrogel preparations. Homopolymeric vinyl pyrrolidone hydrogels were also prepared by the same technique. The hydrogels were characterized by differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. Equilibrium swelling studies were carried out in enzyme‐free simulated gastric and intestinal fluids (SGF and SIF, respectively). These results indicate the pH‐responsive nature of the hydrogels. The gels swelled more in SIF than in SGF. A model drug, propranolol hydrochloride (PPH), was entrapped in these gels and the in vitro release profiles were established separately in both enzyme‐free SGF and enzyme‐free SIF. The drug release was found to be faster in SIF. About 93 and 99% of the entrapped drug was released over a period of 24 h in SGF and SIF, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2597–2604, 2002  相似文献   

14.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Electron‐beam (E‐beam) curing of 4,4′‐bismaleimidodiphenylmethane (BMPM)/BMI‐1,3‐tolyl/o,o′‐diallylbisphenol A (DABPA)–based bismaleimide (BMI) systems and their mixing with various reactive diluents, such as N‐vinylpyrrolidone (NVP) and styrene, were investigated to elucidate how temperature, electron‐beam dosage, and diluent concentration affect the cure extent. The effect of free‐radical initiator on the cure reactions was also studied. It was found that low‐intensity E‐beam exposures cannot cause the polymerization of BMI. High‐intensity E‐beam exposures give high reaction conversion attributed to a high temperature increase, which induced thermal curing. It was shown that the dilution and activation of NVP in BMI cause a more complete BMI cure reaction under E‐beam radiation. BMI/NVP can be initiated easily by low‐intensity E‐beam without thermal curing. FTIR studies indicate that about 70% of the reaction is complete for BMI/NVP with 200 kGy dosage exposure at 10 kGy per pass. The sample temperature only reaches about 75°C. The free‐radical initiator, dicumyl peroxide, can accelerate the reaction rate at the beginning of E‐beam exposure, but does not affect the final reaction conversion. The increase of the concentration of NVP in the BMI/NVP systems increases the reactive conversions almost linearly. © 2004 Wiley Periodicals Inc. J Appl Polym Sci 94: 2407‐2416, 2004  相似文献   

16.
Melt grafting of acrylic acid (AA) and butyl acrylate (BA) (equal molar ratios) onto low‐density polyethylene (LDPE) was carried out in Haake internal mixter by free radical grafting copolymerization. The graft degree of AA and BA in the grafted LDPE (LDPE‐g‐(AA+BA)) was determined by FTIR. The influences of initiator on the graft degree of AA and BA, melt flow rate (MFR), and gel content were investigated, and the optimum conditions were obtained. The successive self‐nucleation/annealing (SSA) thermal fraction method was used to characterize the molecular structure and polydispersity of LDPE‐g‐(AA+BA) with various graft degrees. The effects of thermal fraction parameters on fraction of LDPE‐g‐(AA+BA) were investigated. On the basis of the results of SSA, the grafting reaction mechanism of AA and BA onto LDPE was proposed, i.e., grafting reaction preferentially occurred on the tertiary carbons of LDPE. The grafted LDPE possessed suitable reactivity and rheological property. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Graft copolymers of polystyrene (PSt) with spherical polypropylene (PP) granules were synthesized by solid‐state reaction. In the copolymerization as a by‐product some gel was formed. The effects of the amount of free radical initiator, feed ratio of St monomer, species of free radical initiator, and composition of the spherical polyolefin granules on the grafting degree of PSt and the gelation were studied. It is found that larger amount of initiator used, and higher feed ratio of St monomer lead to a higher grafting degree and higher content of gel. During the cross‐link reaction process, both styrene and free‐radical participate in the reaction that discloses the reason of the increment of gel with the increment of styrene consumption or initiator consumption. Using PPR, which is a random copolymer of 95.1 mol % propylene units and 4.9 mol % ethylene units, as grafting matrix, higher grafting degree and higher content of gel can be reached than that using isotactic PP as grafting matrix. Using tert‐butyl peroxy benzoate (TBPB) as initiator, under the same conditions there were more PSt grafted to the spherical PP granules and more gel formed than that using benzoyl peroxide (BPO) as initiator. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3682–3687, 2007  相似文献   

18.
Modification of low‐density polyethylene (LDPE) hyperbranched grafting with a maleic anhydride (MAH) was carried out using corotating twin screw extruder in the presence of benzoyl peroxide. The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were obtained with a corotating twin screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy The effects of variations in temperature, PA6 loading, and benzoyl peroxide and MAH concentration were investigated. The results show that most MAH monomers were grafted onto the LDPE at a lower MAH concentration. With the proper selection of the reaction parameters, we obtained a grafting degree higher than 4.9%. Mechanical test results indicate that the blends had good interfacial adhesion and good stability of the phase structure during heating, which was reflected in the mechanical properties. Furthermore, the results reveal that the tensile strength of the blends increased continuously with increasing PA6 content. Moreover, the home‐synthesized maleated LDPE could be used for the compatibilization of LDPE/PA 6 blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The graft copolymerization of methyl methacrylate (MMA) onto high α‐cellulose was carried out homogeneously in an N,N‐dimethyl acetamide/lithium chloride solvent system by using benzoyl peroxide as radical initiator. The rate of grafting was evaluated as a function of concentrations of initiator and monomer, reaction time, and temperature. The grafted products were characterized with the help of infrared spectroscopy, whereas the thermal decomposition of optimum PMMA‐grafted high α‐cellulose was studied using TGA, DTG, and DTA techniques at two heating rates, 10 and 20°C/min, in nitrogen atmosphere in the range of room temperature to 650°C. Three major decomposition steps were identified and the relative thermal stabilities of the PMMA‐grafted high α‐cellulose products were assessed. The kinetic parameters for the three decomposition steps were estimated with the help of two well‐known methods. The thermal stability of the grafted products decreased with the increase of graft yield (GY). Crystallinity or peak intensity of wide‐angle X‐ray diffraction patterns decreased with the increase of GY. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3471–3478, 2004  相似文献   

20.
Graft copolymers of cassava starch and methyl methacrylate (MMA) were synthesized by free‐radical polymerization with benzoyl peroxide (BPO) as an initiator in an aqueous medium at 80°C. The formation of graft copolymers was confirmed by analysis of the obtained products with Fourier transform infrared spectroscopy and scanning electron microscopy. The effects of the amount of cassava starch, the amount of MMA monomer, the amount of BPO, and the reaction time on the grafting characteristics were studied. The optimum condition for grafting were obtained when 5 g of cassava starch, 5 g of MMA, 0.1 g of BPO, and a reaction time of 3 h were used. These condition provided a graft copolymer with 25.00% add‐on, 81.40% monomer conversion, 54.30% homopoly(methyl methacrylate) formed, 45.70% grafting efficiency, 37.20% grafting ratio, and 95.54% yield. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4083–4089, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号