首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The imidization of poly(styrene‐co‐maleic anhydride) (SMA) was conducted, and the glass‐transition temperatures (Tg's) of the resulting products were measured with differential scanning calorimetry. The contributions from functional groups of maleic anhydride, N‐phenylmaleamic acid, and N‐phenylmaleimide to Tg were examined. Tg increased in the order of SMA < styrene–N‐phenyl maleimide copolymer < styrene–N‐phenyl maleamic acid copolymer and followed the Fox equation. Tg of the imidized products of SMA could be controlled by the conversions of both ring‐opening and ring‐closing reactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2418–2422, 2007  相似文献   

2.
Poly(imide‐amide)s (PIAs) and poly(imide‐ester)s (PIEs) containing two Si‐atoms in the repeating unit were synthesized from acid dichlorides and diamines and diphenols, respectively. The acid dichlorides were obtained from the dianhydrides, which reacted first with glycine and then with thionyl chloride. The dianhydrides were obtained from the tetramethyl derivatives, which were oxidized to the tetra acids and then the dianhydrides were obtained with acetic anhydride. PIAs were obtained in N,N‐dimethylacetamide solution at low temperature and the PIEs in a CHCl3 solution. Monomers and polymers were characterized by IR and 1H, 13C, and 29Si‐NMR spectroscopy and the results were in agreement with the proposed structures. The ηinh values were indicative of low molecular weight species and of oligomeric nature. The glass transition (Tg) and thermal decomposition temperatures (TDT) values of PIAs were higher than those of PIEs due to the presence of the aromatic rings of the diamine. The aliphatic groups bonded to the Si atom of the acid dichloride moiety promoted the decrease of the thermal stability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
A preparation procedure for colorless, transparent N-substituted maleimide of high quality which can provide heat-resistant transparent methacryl resins was developed. N-Alkylmaleimide, the alkyl substituent of which was composed of 2 to 4 carbons, is employed, giving a polymer with enhanced heat distortion temperature (HDT) because of the higher Tg. The advantages of relatively low melting points and high vapor pressure of N-alkylmaleimide can be used for the preparation of a high-quality product with purification of the monomer by distillation. N-Isopropylmaleimide (IPMI), which fulfills these requirements, is especially useful as a monomer for transparent resins. IPMI was synthesized in a high-yield using a mixture of orthophosphoric acid and orthophosphoric acid-isopropylamine salt as catalyst. IPMI, the purity of which is 99.9 wt % or above, contains 100–200 ppm of N-isopropylmaleamic acid, maleic anhydride, dimethylmaleic anhydride, solvent, and water. IPMI, which solidifies at 25.8°C, is obtained as a colorless liquid and is freely soluble in common monomers such as methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN). The obtained IPMI showed excellent thermal stability, and no quality change was observed after heating for 100 h at 50°C. The copolymer of MMA and IPMI exhibited the same YI value as a measure of coloration, and almost the same transparency as the homopolymer of MMA. An increase in IPMI content in the copolymer by 1 mol % increased the polymer Tg by 0.8°C. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1055–1062, 1997  相似文献   

5.
Using direct polymer reaction of poly(styrene‐co‐maleic anhydride) (SMA), a synthesis of copolymer of styrene and N‐aryl succinimide (SMI) has been investigated. SMI copolymers were synthesized from SMA copolymers by a concerted two‐step reaction, which consisted of the condensation reaction (step 1) of SMA with aromatic amine to prepare a precursor, succinamic acid, for imide formation and the cyclodehydration reaction (step 2) of succinamic acid. In this article, the application of Searle's preparation method of N‐aryl or N‐alkyl maleimide to the direct polymer reaction for SMI was attempted. Compared with synthesis of monomeric imides, the imide formation in polymeric condition appeared to be a little more sensitive to the reaction condition. The optimum condition for maximum conversion was examined in terms of time, temperature, and the amount of reactants. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1187–1196, 1999  相似文献   

6.
A new‐type of dicarboxylic acid was synthesized from the reaction of 2,5‐bis(4‐aminobenzylidene)cyclopentanone with trimellitic anhydride in a solution of glacial acetic acid/pyridine (Py) at refluxing temperature. Six novel heat resistance poly(amide‐imide)s (PAIs) with good inherent viscosities were synthesized, from the direct polycondensation reaction of N,N′‐[2,5‐bis(4‐aminobenzylidene)cyclopentanone]bistrimellitimide acid with several aromatic diamines, by two different methods such as direct polycondensation in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (Py) and direct polycondensation in a p‐toluene sulfonyl chloride (tosyl chloride, TsCl)/pyridine (Py)/N,N‐dimethylformamide (DMF) system. All of the above polymers were fully characterized by 1H NMR, FTIR, elemental analysis, inherent viscosity, solubility tests, UV‐vis spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and derivative of thermaogravimetric (DTG). The resulted poly(amide‐imide)s (PAIs) have showed admirable good inherent viscosities, thermal stability, and solubility. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

8.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

9.
A series of acetylene‐terminated imide oligomers based on 2,3,3′,4′‐Diphenyl ether tetracarboxylic acid dianhydride (a‐ODPA), 3,4′‐Oxydianiline (3,4′‐ODA), and 3‐Ethynylaniline (3‐EA) with different molecular weights were synthesized by using acetic anhydride and triethylamine as dehydrating agent. Their main structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). Thermal curing processing was characterized by FT‐IR and differential scanning calorimetry (DSC). All the uncured imide oligomers showed excellent solubility (more than 30 wt %) in organic solvent such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP). These imide oligomers also possessed a very low viscosity, thus provided better processing window. These oligomers were formulated into thermosetting films by thermal crosslinking of the ethynyl groups. The properties of cured films were evaluated by dynamic mechanical thermal analysis (DMA), thermogravimetric analysis (TGA), and tensile measurement. The glass transition temperature (Tg) and elongation at break of the cured films were found to be almost >260°C and >9.2%, respectively. The cured films in air resulted in higher thermal stability than those under N2 atmosphere. Experimental results suggested that the introduction of asymmetric and flexible ether‐hinge with 3‐EA in polyimide oligomers can improve the processability of the imide oligomers and the toughness for a cured sample without sacrificing their thermal‐oxidative stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42537.  相似文献   

10.
A series of new semifluorinated poly(ether imide)s (PEI)s was synthesized from a diamine monomer, 9,9‐bis ‐[3‐phenyl‐4‐{2′‐trifluoromethyl‐4′‐(4′′‐aminophenyl)phenoxy} phenyl]fluorene on reaction with three different aromatic dianhydrides namely, 4,4′‐(4,4′‐isopropylidenediphenoxy)bis (phthalic anhydride), 4,4'‐(hexafluoro‐isopropylidene)diphthalic anhydride, and 4,4'‐oxydiphthalic anhydride. The PEIs were well characterized by elemental analysis, spectroscopic, thermal, mechanical, electrical, and optical techniques. The synthesized PEIs showed high glass transition temperature (Tg up to 288 °C) and high thermal stability (Td ,10 up to 521 °C under synthetic air), high tensile strength, up to 76 MPa and low dielectric constant (?) (2.35–2.61 at 1 MHz). The membranes prepared from these polymers were studied for their gas permeability for four different gases CO2, O2, N2, and CH4. The PEI membranes showed high gas permeability (P CO2 up to 70.3 and P O2 up to 16.7 Barrer) and high permselectivity (P CO2/P CH4 up to 73.6 and P O2/P N2 up to 13.4); for the O2/N2 gas pair the PEIs surpassed the present upper boundary limit of 2008 drawn by Robeson. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45213.  相似文献   

11.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Hydrosilylation of nadic anhydride with tetramethyl disiloxane yielded 5,5′‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboxylic anhydride (I), which further reacted with 4‐aminophenol to give N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide (II). Epoxidation of II with excess epichlorohydrin formed a siloxane‐ and imide‐modified epoxy oligomer (ie diglycidyl ether of N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide) (III). Equivalent ratios of III/I of 1/1 and 1/0.8 were prepared and cured to produce crosslinked materials. Thermal mechanical and dynamic mechanical properties were investigated by TMA and DMA, respectively. It was noted that each of these two materials showed a glass transition temperature (Tg) higher than 160 °C with moderate moduli. The thermal degradation kinetics was studied with dynamic thermogravimetric analysis (TGA) and the estimated apparent activation energies were 111.4 kJ mol?1 (in N2), 117.1 kJ mol?1 (in air) for III/I = 1/0.8, and 149.2 kJ mol?1 (in N2), 147.6 kJ mol?1 (in air) for III/I = 1/1. The white flaky residue of the TGA char was confirmed to be silicon dioxide, which formed a barrier at the surface of the polymer matrix and, in part, accounted for the unique heat resistance of this material. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   

14.
The corresponding N‐hydroximide and N‐methyl‐N‐hydroximide of poly[ethylene‐alt‐(maleic anhydride)] (weight average molecular weight (Mw) of 100–500 g mol?1) were prepared as a new oral drug delivery system. Syntheses of N‐hydroximide and N‐methylhydroxamic acid of poly[ethylene‐alt‐(maleic anhydride)] were carried out by chemical modification of polymer with hydroxylamine and N‐methylhydroxylamine, respectively, to give water‐soluble polymers. These activated polymers were immobilized with ketoprofen in the presence of dicyclohexylcarbodiimide to give the corresponding water‐insoluble ketoprofen conjugates. All products were characterized by elemental analysis as well as Fourier transform infrared and 1H NMR spectra. In vitro release of ketoprofen was studied by measuring UV absorption at λmax = 260 nm as a function of time. This study demonstrated the potential use of N‐hydroximide and N‐methyl‐N‐hydroxamic acid of poly[ethylene‐alt‐(maleic anhydride)] as a drug delivery system. Controlled release was studied at different pH values and at different temperatures. At physiological temperature, the amount of drug released increased with increasing pH. The copolymer‐drug adducts released the drug very slowly at the low pH found in the stomach thus protecting the drug from the action of high acid conditions and resident digestive enzymes. These N‐hydroxamic acid polymer‐drug conjugates were found to be potentially useful in the delivery of macromolecular drugs to targeted sites in the lower gastrointestinal tract and the colon area. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
A novel amide and imide copolymer, poly(N‐phenylmethacrylamide‐coN‐(p‐hydroxyphenyl)maleimide) was synthesized for the matrix resin of ultraviolet (UV) photoresist. Elemental analysis and self‐polymerization experiment verified that this copolymer was very close to 1:1 (molar ratio) in composition and was predominately alternating. It was able to dissolve in various organic solvents and form uniform curing film when spin‐coating. Its differential scanning calorimetry and thermogravimetry analysis test showed good thermal stability and its glass transition temperature (Tg) was about 280°C. Photolithographic experiment indicated that the UV photoresist formulated with this copolymer as matrix resin was achieved the resolution of about 5 μm, the contrast of 3.001, and the sensitivity of 32 mJ/cm2. With good plasma etching resistance, the photoresist studied was able to bear 250°C for 30 min without thermal deformation during the thermal resistance test. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
Several poly(imide siloxane) block copolymers with the same bis(γ‐aminopropyl)polydimethylsiloxane (APPS) content were prepared. The polyimide hard block was composed of 4,4′‐oxydianiline and 3,3′,4,4′‐diphenylthioether dianhydride (TDPA), and the polysiloxane soft block was composed of APPS and TDPA. The length of polysiloxane soft block increased simultaneously with increasing the length of polyimide hard block. For better understanding the structure–property relations, the corresponding randomly segmented poly(imide siloxane) copolymer was also prepared. These copolymers were characterized by FT‐IR, 1H‐NMR, dynamic mechanical thermal analysis, thermogravimetric analysis, polarized optical microscope, rheology and tensile test. Two glass transition temperatures (Tg) were found in the randomly segmented copolymer, while three Tgs were found in the block copolymers. In addition, the Tgs, storage modulus, tensile modulus, solubility, elastic recovery, surface morphology and complex viscosity of the copolymers varied regularly with increasing the lengths of both blocks. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
A new type of tetraimide‐dicarboxylic acid (I) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid (m‐ABA), 4,4′‐oxydiphthalic anhydride (ODPA) and 4,4′‐methylenedianiline (MDA) at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I. A series of soluble and light‐coloured poly(amide–imide–imide)s (IIIa–j) was prepared by triphenyl phosphite‐activated polycondensation from the tetraimide‐diacid I with various aromatic diamines (IIa–j). All films cast from DMAc had cutoff wavelengths shorter than 400 nm (376–393 nm) and had b* values between 20.46 and 40.67; these polymers were much lighter in colour than those of the corresponding trimellitimide series. All polymers were readily soluble in a variety of organic solvents such as NMP, N,N‐dimethylacetamide, dimethyl sulfoxide, and even in the less polar m‐cresol and pyridine. Compared with those of corresponding ODPA–MDA polyimide, the solubilities of poly(amide–imide–imide)s IIIa–j were greatly improved. Polymers IIIa–j afforded tough, transparent, and flexible films, which had tensile strengths ranging from 82 to 105 MPa, elongations at break from 8 to 14%, and initial moduli from 2.0 to 2.2 GPa. The glass transition temperature of polymers were recorded at 255–288 °C. They had 10% weight loss at a temperature above 540 °C and left more than 60% residue even at 800 °C in nitrogen. © 2002 Society of Chemical Industry  相似文献   

18.
The heat‐resistant copolymer of N‐phenylmaleimide (NPMI)–styrene (St)–maleic anhydride (MAH) was synthesized in xylene at 125°C with di‐tert‐butyl diperoxyterephthalate as an initiator. The characteristics of the copolymer were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR), gel permeation chromatography, and elemental analysis. The 13C‐NMR results show that the copolymer possessed random sequence distribution; this was also supported by the differential scanning calorimetry experiment, in which a single glass‐transition temperature (Tg) of 202.3°C was observed. The thermal stability and degradation mechanism of the copolymer were investigated by thermogravimetric analysis. Using the Kissinger equation and Ozawa equation, we proved a nucleation controlling mechanism with an apparent activation energy of 144 kJ/mol. Blends of acrylonitrile–butadiene–styrene with the NPMI–St–MAH copolymer with various contents were prepared with a twin‐screw extruder processes. The mechanical and thermal properties of the materials, such as the tensile and flexural strength, Tg's, and Vicat softening temperatures, were all enhanced with the addition of the modifier, whereas the melt flow index decreased. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Poly(amide‐imide)s (PAI) bearing azobenzene chromophore groups were prepared by allowing a hydroxyl‐containing azobenzene dye (Disperse Red 1) to react with and reactive‐terminated PAI with weight–average molecular weights ranging from ~ 1.2 to 2.0 × 104 g/mol. Such PAI were prepared by the condensation of trimellitic anhydride (TMA) and 4,4′‐methylene diphenyl diisocyanate (MDI). The final polymers presented a deep red color, with an absorption maxima in N,N‐dimethylformamide (DMF) solution at 490 nm, close to the azobenzene reactant used (Disperse Red 1) and molecular weights slightly higher than the pristine polymer, showing that the azo chromophore incorporation reaction does not lead to side reactions. The azofunctionalized polymer presented a high Tg value (170°C) that could be increased by a thermal curing process to 240°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 841–847, 2007  相似文献   

20.
A new indane containing unsymmetrical diamine monomer ( 3 ) was synthesized. This diamine monomer leads to a number of novel semifluorinated poly (ether imide)s when reacted with different commercially available dianhydrides like benzene‐1,2,4,5‐tetracarboxylic dianhydride (PMDA), benzophenone‐3,3′, 4,4′‐tetracarboxylic dianhydride (BTDA), 4,4′‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐(4,4′‐Isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) by thermal imidization route. All the poly(ether imide)s showed excellent solubility in several organic solvents such as N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), tetrahydrofuran (THF), chloroform (CHCl3) and dichloromethane (DCM) at room temperature. These light yellow poly (ether imide)s showed very low water absorption (0.19–0.30%) and very good optical transparency. Wide angle X‐ray diffraction measurements revealed that these polymers were amorphous in nature. The polymers exhibited high thermal stability up to 526°C in nitrogen with 5% weight loss, and high glass transition temperature up to 265°C. The polymers exhibited high tensile strength up to 85 MPa, modulus up to 2.5 GPa and elongation at break up to 38%, depending on the exact polymer structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号