首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(N‐phenyl acrylamide) (PPA) and poly(N‐phenyl methacrylamide) (PPMA) were prepared by using N‐phenyl acrylamide and N‐phenyl methacrylamide as monomer, respectively, in tetrahydrofuran using azobisisobutyronitrile as initiator. FT‐IR, 1H‐NMR, and GPC were used to characterize their molecular structure. The PPA obtained exhibited higher molecular weight and wider molecular weight distribution than that of PPMA. Their thermal degradation and kinetics were systematically investigated in two atmospheres of nitrogen and air from room temperature to 800°C by thermogravimetric analysis at 10°C/min. Based on the thermal decomposition reactions in nitrogen and air, it is shown that a three‐step degradation process in nitrogen and a four‐step degradation process for two polymers were observed in this investigation. The initial thermal degradation temperature was lower than 190°C. Under two atmospheres, PPA exhibits higher degradation temperature, higher temperature at the maximum weight‐loss rate, faster maximum weight‐loss rates, and larger weight loss for the first‐stage decomposition, as well as higher char yield at 500°C than those of PPMA. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1065–1071, 2003  相似文献   

2.
Pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) and the resulting imide‐acid [N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid] (4) was obtained in quantitative yield. The compound (4) was converted to the N,N′‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid chloride (5) by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride (5) with several aromatic diols such as phenol phthalein (6a), bisphenol‐A (6b), 4,4′‐hydroquinone (6c), 1,8‐dihydroxyanthraquinone (6d), 4,4‐dihydroxy biphenyl (6e), and 2,4‐dihydroxyacetophenone (6f) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions proceeded rapidly and are completed within 20 min, producing a series of optically active poly(ester‐imide)s with good yield and moderate inherent viscosity of 0.10–0.26 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(ester‐imide)s are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2211–2216, 2002  相似文献   

3.
The thermal decomposition behavior and degradation kinetics of poly(N‐adamantyl‐exo‐nadimide) were investigated with thermogravimetric analysis under dynamic conditions at five different heating rates: 10, 15, 20, 25, and 30°C/min. The derivative thermogravimetry curves of poly(N‐adamantyl‐exo‐nadimide) showed that its thermal degradation process had one weight‐loss step. The apparent activation energy of poly(N‐adamantyl‐exo‐nadimide) was estimated to be about 214.4 kJ/mol with the Ozawa–Flynn–Wall method. The most likely decomposition process was an F1 deceleration type in terms of the Coats–Redfern and Phadnis–Deshpande results. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3003–3009, 2007  相似文献   

4.
A copolymer of 4‐methoxybenzyl methacrylate and isobornyl methacrylate was synthesized by atom transfer radical polymerization. The structure of poly(4‐methoxybenzyl methacrylate‐co‐isobornyl methacrylate) was confirmed by means of Fourier transform infrared, 1H‐NMR, and 13C‐NMR techniques. The molecular weight distribution values of the copolymer were determined with gel permeation chromatography. The number‐average molecular weight and polydispersity index values of poly(4‐methoxybenzyl methacrylate‐co‐isobornyl methacrylate) were found to be 12,500 and 1.5, respectively. The kinetics of the thermal degradation of the copolymer was investigated with thermogravimetric analysis at different heating rates. The activation energy values obtained with the Kissinger, Flynn–Wall–Ozawa, and Tang methods were determined to be 166.38, 167.54, and 167.47 kJ/mol, respectively. Different integral and differential methods were used, and the results were compared with these values. Doyle approximation was also used for comparing the experimental results to master plots. An analysis of the experimental results suggested that the reaction mechanism was an R1 deceleration type in the conversion range studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
N‐(4‐Hydroxy phenyl) maleimide (HPMI) is prepared and is functionalized with acryloyl, methacryloyl, allyl, propargyl, and cyanate groups. The structural and thermal characterizations of the materials are done using FTIR, NMR, DSC, and TGA. Curing and degradation kinetics are performed using Flynn–Wall–Ozawa, Vyazovkin, and Friedman methods. Activation energies (Ea) for the polymerization of the synthesized monomers varied and are dependent on the nature of the functional group present in HPMI. The propargyl functionalized monomer shows the highest Ea values whereas the methacryloyl functionalized monomer shows the lowest Ea values. In the case of thermal degradation of the polymerized materials, the apparent Ea values for acryloyl, methacryloyl and cyanate functionalized materials are slightly higher than that of poly‐HPMI (PHPMI). The thermally cured allyl and propargyl functionalized materials show a different trend and may be attributed to the complications arising due to Claisen rearrangement reaction during the thermal curing. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39935.  相似文献   

6.
The reaction mechanism of decomposition process and the kinetic parameters of the poly(n‐butyl methacrylate‐b‐styrene), poly(nButMA‐b‐St), diblock copolymer synthesized by atom transfer radical polymerization (ATRP) were investigated by thermogravimetric analysis (TGA) at different heating rates. TGA curves showed that the thermal decomposition occurred in one stage. The apparent activation energies of thermal decomposition for copolymer, as determined by the Kissinger's, Flynn–Wall–Ozawa and Tang methods, which does not require knowledge of the reaction mechanism (RM), were 112.52, 116.54, and 113.41 kJ/mol, respectively. The experimental results were compared with master plots, in the range of the Doyle approximation. Analysis of experimental results suggests that in the conversion range studied, 3–18%, the actual RM is an A2 sigmoidal type. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
A series of segmented poly(urethane‐urea) block copolymers were synthesized with varying proportions of polydimethylsiloxane diols in combination with polytetramethylene ether glycol (PTMG) using 4,4'‐methylenediphenyl diisocyanate followed by chain extension with a (50:50 mol %) mixture of 4,4'‐methylene‐bis(3‐chloro‐2,6‐diethylaniline) (M‐CDEA) and 1,4‐butanediol (BD). The molecular structures of polydimethylsiloxane urethane‐ureas were characterized by ATR‐FTIR and 1H‐NMR spectroscopic techniques. Distribution of siloxane domain and its influence on surface roughness were investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM), respectively. The mechanical and thermal properties of the elastomers were studied by thermogravimetric analysis, dynamical mechanical thermal analysis, and tensile measurement. The results showed that by incorporation of polydimethylsiloxane diol and M‐CDEA chain extender in polyurethane formulation, some improvements in thermal stability, fire resistance and surface hydrophilicity were achieved. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1743–1751, 2013  相似文献   

8.
4‐(4′‐Methoxyphenyl)urazole (MPU) was prepared from 4‐methoxybenzoic acid in five steps. The reaction of monomer MPU with n‐isopropylisocyanate was performed at room temperature in N,N‐dimethylformamide solution, and the resulting bis‐urea derivative was obtained in high yield and was finally used as a model for polymerization reaction. The step‐growth polymerization reactions of monomer MPU with hexamethylene diioscyanate, isophorone diioscyanate, and toluene‐2,4‐diioscyanate were performed in N,N‐dimethylacetamide solution in the presence of pyridine as a catalyst. The resulting novel polyureas have an inherent viscosity (ηinh) in a range of 0.07–0.21 dL/g in DMF and sulfuric acid at 25°C. These polyureas were characterized by IR, 1H‐NMR, elemental analysis, and TGA. Some physical properties and structural characterization of these novel polyureas are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1141–1146, 2002  相似文献   

9.
A low molecular weight silk fibroin powder (LMSF) was prepared through high temperature (200°C) and high pressure (20 kgf/cm2), without any addition of chemicals. The carbonized adducts produced during this process were then removed by treatment with activated charcoal. The yield of LMSF by this preparation method was over 60% after the removal of carbonized adducts by using activated charcoal. Amino acid analysis showed an observable decrease in contents of serine and tyrosine in LMSF prepared by this method, as compared to those prepared by neutral salt. The molecular weight of this LMSF was also observably decreased with an increase in the reaction time. From the measurements of differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA), thermal properties of LMSF through high temperature and high pressure were also decreased as compared to those produced by neutral salts. In addition, wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallinity of LMSF differed from that of the original silk fibroin. It can be said that the preparation method of LMSF in this study is a simple, economical, and environmentally compatible process with many advantages. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2890–2895, 2002  相似文献   

10.
Polyaniline, poly(aniline‐co‐4,4′‐diaminodiphenylsulfone), and poly(4,4′‐diaminodiphenylsulfone) were synthesized by ammonium peroxydisulfate oxidation and characterized by a number of techniques, including infrared spectroscopy, ultraviolet–visible absorption spectroscopy, 1H‐NMR, thermogravimetric analysis, and differential scanning calorimetry. These copolymers had enhanced solubility in common organic solvents in comparison with polyaniline. The conductivities of the HCl‐doped polymers ranged from 1 S cm?1 for polyaniline to 10?8 S cm?1 for poly(4,4′‐diaminodiphenylsulfone). The copolymer compositions showed that block copolymers of 4,4′‐diaminodiphenylsulfone (r1 > 1) and aniline (r2 < 1) formed and that the reactivity of 4,4′‐diaminodiphenylsulfone was greater than that of aniline. The results were explained by the effect of the ? SO2? group present in the polymer structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2337–2347, 2003  相似文献   

11.
A novel halogen‐free flame retardant, O,O‐diethyl‐O‐allyl thiophosphate (DATP), which simultaneously contained phosphorus and sulfur, was synthesized through a simple method. The structure of DATP was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and mass spectroscopy. The flame‐retardant copolymer was obtained by the free‐radical copolymerization of DATP with acrylonitrile. The flammability and thermal degradation characteristics of the copolymer were assayed by limiting oxygen index measurement, thermogravimetric analysis, and differential scanning calorimetry. The results show that the incorporation of a small percentage of DATP into the copolymer had a significant effect on the retarding combustion of the copolymer, with the limiting oxygen index of the copolymer reaching 28.5% and the char yield being 68.63 wt % at 554°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The kinetics of thermal degradation and lifetime of poly(aryl ether ketone) containing 2,6‐naphthalene moieties (PANEK) in nitrogen and in air were studied with dynamic thermogravimetry. The results showed that the thermal stability of PANEK in air was substantially less than that in nitrogen. The kinetic parameters for PANEK, including the activation energy, the reaction order; and the frequency factor of the degradation reaction, were analyzed with the Ozawa method. The lifetime of PANEK decreased gradually from 1.09 × 107 to 0.65 × 102 min as the temperature increased from 200 to 400°C in air and from 2.12 × 108 to 3.30 × 102 min in nitrogen. These lifetime parameters indicated that the service/process temperature had a strong influence on PANEK. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
The degradation of poly(aryl ether ketone) containing 2,7‐naphthalene moieties was subjected to dynamic and isothermal thermogravimetry in nitrogen and air. The dynamic experiments showed that the initial degradation temperature, temperature for 5% weight loss, and temperature corresponding to the maximum degradation rate of poly(aryl ether ketone) containing 2,7‐naphthalene moieties were a little higher than those of poly(ether ether ketone) and almost independent of the 2,7‐naphthalene moiety content. The thermal stability of poly(aryl ether ketone) containing 2,7‐naphthalene moieties in air was substantially less than that in nitrogen, and the degradation mechanism was more complex. The results obtained under the isothermal conditions were in agreement with the corresponding results obtained in nitrogen and air under the dynamic conditions. In the dynamic experiments, the apparent activation energies for the degradation processes were 240 and 218 kJ/mol in nitrogen and air for the second reaction stage as the heating rate was higher than 5°C/min. In the isothermal experiments, the apparent activation energies for the degradation processes were 222 and 190 kJ/mol in nitrogen and air, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
A series of bismaleimide‐triazine resins (EBT) were prepared from 2‐(4′‐maleimido)phenyl‐2‐(4′‐maleimidophenoxyl)phenylbutane (EBA‐BMI) and 2,2‐bis(4‐cyanatophenyl)propane (BADCy). The resins show attractive processability with good solubility in low boiling point solvents and wide processing temperature windows. Introduction of diallylbisphenol A (DBA) can decrease the curing temperature of EBT resins that the curing exothermic peak temperature shifted from 291 to 237 °C as the content of DBA increased from 0 to 20%. The curing condition influenced the thermal properties of the cured EBT resins. The glass transition temperature increased as the curing temperature and curing time increased. The cured EBT resins show high glass transition temperature up to 352 °C, high thermal stability with 5% weight loss temperature over 405 °C, low coefficient of thermal expansion about 45 to 52 ppm/°C, and high storage modulus up to 2.6 GPa at 250 °C. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44519.  相似文献   

15.
This work presents the synthesis and characterization of a new water‐soluble oligophenol derivative, 4‐(2‐hydroxybenzylideneamino)benzenesulfanilic acid (OSAL‐SA) and its metal complexes. The chemical structure of the water‐soluble polymer was characterized by nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopies and thermogravimetric analyses (TGAs). Pb(II), Cu(II), Co(II) complexes of the polymer were also synthesized in methanol. Characterizations of water insoluble polymer‐metal complexes were performed by FTIR, flame atomic absorption spectroscopy, and TGA. The conductivity measurements of OSAL‐SA and polymer–metal complexes were carried out by the four‐probe technique. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The synthesis and thermal properties of thermoplastic poly(urethane‐imide) (PUI) resins were studied. Model reaction studies on the reactions of 4,4′‐diphenylcarbamatodiphenylmethane and 4,4′‐diisocyanatodiphenylmethane with phthalic anhydride were performed. We found that the reaction of anhydrides with urethane groups could take place under certain reaction conditions. According to the model reaction studies, N‐2‐methyl‐pyrrolidone was employed as a solvent, and no catalyst was used in the polymerization. To restrain the side reaction of anhydrides with urethane groups, we adopted a two‐step chain‐extending procedure in a chain‐extending reaction. The inherent viscosity of PUI was 0.83–0.99 dL/g. The prepared polymers not only exhibited improved solubility in organic solvents but also formed flexible films. Thermogravimetric analysis showed that PUI exhibited a two‐step thermal weight‐loss pattern. The first step of the thermal degradation of PUI was attributed to the thermooxidizing cleavage of weak and labile linkage, such as urethane groups, isopropylidene, and methylene, except for imide rings. The polymer inherent viscosity decreased sharply during the first step of thermal degradation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 773–781, 2001  相似文献   

17.
Two types of poly(ethylene terephthalate) (PET) copolyesters were successfully prepared with sodium‐5‐sulfo‐bis‐(hydroxyethyl)‐isophthalate (SIPE) and poly(ethylene glycol) (PEG) units with different molecular weights named as cationic dyeable polyester and easy cationic dyeable polyester. Their chemical and crystalline structures were characterized by the nuclear magnetic resonance (NMR), wide angle X‐ray diffraction (WAXD), and small angle X‐ray scattering measurement, and their thermal properties were tested by differential scanning calorimetry and thermogravimetric analysis, respectively. NMR experimental results showed that the actual molar ratio of comonomers was basically consistent with the correlative feed ratio. WAXD results indicated that the crystalline structures of prepared copolyesters were similar to that of PET. Moreover, the glass transition temperature, melting temperature, and thermal degradation temperature were found to decrease with the reduction of the of PEG units as the incorporation of lower of PEG units brought more ether bonds into molecular chains, which increased the irregularity of molecular chain arrangement and led to lower crystallinity. In addition, because the incorporation of PEG units with lower molecular weight led to more ether bonds and hydroxyl end‐groups in molecular chains, the value of contact angle of PET copolyesters dropped, manifesting PET copolyesters had better hydrophilicity with the decreasing molecular weight of PEG units.© 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39823.  相似文献   

18.
N′‐(2‐cyanoacetyl)acrylohydrazide (CAH) was obtained with the treatment of 2‐cyanoacetohydrazide with acryloyl chloride in acetonitrile. The obtained acrlyoyl derivative was transferred to the corresponding polymer, poly[N′‐(2‐cyanoacetyl)acrylohydrazide] (PCAH), through treatment with 2,2′‐azobisisobutyronitrile at 75°C. Copolymers with styrene or N‐phenyl acrylamide monomers were synthesized with different ratios. The structures of these polymers were characterized with elemental analysis and spectral data. The morphology, metal uptake, and ion selectivity of the polymers were studied. In addition, the swelling behavior of the polymer and metallopoymer complexes at different times of drying was also investigated. Thermogravimetric analysis of the polymer and polymer complexes under air reflected that PCAH–Pb was the most stable, followed by PCAH, PCAH–Hg, PCAH–Cu, PCAH–Ni, and PCAH–Co. A similar stability with little difference was reported under nitrogen. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

20.
Diimide–diacid ( I ) having an imide group in its rigid structure was synthesized by the refluxing of 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride [4,4′‐carbonyldiphthalic anhydride (BTDA)] and p‐amino benzoic acid in a mixture of acetic acid and pyridine (3 : 2 v/v). The chloroderivative of the diacid ( I ) was synthesized by its reaction with thionyl chloride, this was followed by condensation with different diamines with phenyl, naphthyl, ether, sulfide, and cardo groups to generate a series of diamide–diimide–diamines (DADIDAs). The resultant DADIDAs were characterized by elemental analysis and spectroscopic techniques, namely, Fourier transform infrared spectroscopy and NMR spectroscopy, and were used as epoxy curing agents to impart flame retardancy to the epoxy system. Two epoxy blends (designated as ES and EP) were prepared by the homogeneous mixing of diglycidyl ether of bisphenol A (DGEBA) with 1,3‐bis(3‐glycidyloxypropyl)tetramethyl disiloxane and DGEBA with tris(glycidyloxy)phosphine oxide: each in a ratio of 3 : 2 respectively. The synergistic effect of phosphorus/silicon with nitrogen on the thermal properties of the modified epoxy system was studied. The curing behavior of the epoxy resins formulated by the reaction of stoichiometric amounts of ES/EP with the synthesized DADIDAs were determined by differential scanning calorimetry, and the thermal stabilities of the cured epoxies were evaluated by thermogravimetric analyses (TGAs) under nitrogen and air. TGA indicated that the residual weight percentage of polymers at 800°C was in the range 36.4–60.0 in nitrogen, and in air, it was up to 6.5. However, the major loss in weight in air occurred at elevated temperature; this demonstrated their potential use as flame‐retardant epoxy systems for electronic/electrical encapsulants. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号