首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly swellable glycidyl methacrylate terpolymers with styrene and a series of crosslinkers (divinyl benzene and ethylene, diethylene, and triethylene glycol dimethacrylates) were obtained by suspension polymerization. The loading capacities of the resins, their glass‐transition temperatures, and their swelling characteristics in 20 solvents were examined with respect to the monomer composition. A selected resin was modified for a cobalt–imine complex and tested as a catalyst in a model ring‐opening reaction. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The reaction of toluene diisocyanate with 2,2,3,3‐tetrafluoro‐1‐propanol (fluoro compound) or 3‐glycidoxypropyl trimethoxysilane(siloxane compound) and other additives to form the structure of the fluoro‐based or siloxane‐based polyurethane (PU) ionomer has been proven by infrared spectra. Experimental results indicated that the amount of water vapor permeability of the film made by fluoro‐based or siloxane‐based PU ionomer appeared to gradually increase with increasing concentration of the siloxane compound or fluoro compound, as a result of the formation of more porosities. Our experimental results also showed that the water vapor absorption was seen to be larger for the film made by siloxane‐based PU ionomer film than for the film made by fluoro‐based PU ionomer film, as a result of increased hydrophilic groups attached to the backbone of the PU ionomer molecule. For the film prepared by siloxane‐based PU ionomer, both tensile strength and elongation appeared to increase with an increase in the concentration of siloxane compound. This may be the result of the intermolecular interaction between siloxane‐based PU ionomer molecules themselves, thus enhancing the crosslinking capability of the ionomer molecules. On the other hand, both tensile strength and elongation for the film prepared by fluoro‐based PU ionomer decreased with increasing concentration of the fluoro compound, as a result of intramolecular interaction greatly reducing the crosslinking capability of the ionomer molecules. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3767–3773, 2006  相似文献   

3.
Rosin‐based polyester polyols were synthesized from a rosin–maleic anhydride adduct, diethylene glycol, and ethylene glycol with and without adding adipic acid and phthelic anhydride, in the presence of catalyst. Rigid polyurethane (PU) foams were prepared with these rosin‐based polyols and compared with foam made with an industrial polyester Daltolac? P744. The experimental results show that the foaming behavior for the foams prepared from such rosin‐based polyols is similar to that of industrial products, but their 10% compression strength, both parallel and vertical to foaming rise direction, is higher and the dimensional stability at 100 and ?30°C is similar or somewhat better than that of a comparable system. Furthermore, the rosin‐modified PU foams exhibit even lower thermal conductivity and much higher activation energies during the pyrolysis process. All these unique physical properties of the rosin‐modified rigid PU foams were correlated to the structures of these PU foams. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 598–604, 2002; DOI 10.1002/app.10312  相似文献   

4.
We successfully synthesized an anionic water‐borne polyurethane (PU) capable of reacting with a reactive dye to form a covalent bond with the dye molecule. The anionic water‐borne PU was synthesized and grafted with the reactive dye to form a dyed PU. First, the PU prepolymer was synthesized from 4,4′‐methylene bis(isocyanatocyclohexane), poly(tetramethylene glycol), 2,2′‐bis(hydroxymethyl) propionic acid (as an anionic center), and triethyleneamide (as a neutralizer). Then, pure water was added to emulsify and disperse the prepolymer to form an anionic water‐borne PU prepolymer. Finally, the extender N‐(2‐hydroxyethyl) ethylene diamine was used to extend the anionic water‐borne prepolymer to form a PU polymer with hydroxyl groups that could further react with the reactive dye molecule. With respect to the heating properties, the dyed PU polymers exhibited higher glass‐transition temperatures of the hard segment than those without dye molecules. However, neither the glass‐transition temperature of the soft segment nor the melting temperature of the soft segment varied in the presence of dye molecules, but they were changed with various chain lengths of the soft segment. As for the mechanical properties, the modulus and strength of the dyed PU polymers decreased because of the bulkiness of their dye molecules, but the breaking elongation increased. Moreover, the inherent viscosity decreased in the presence of the dye molecules. As for the dyeing properties, the percentage of dye grafting was greater than 90%. The dye‐grafted PU exhibited a lower percentage of migration than PU extended with ethylene diamine (without hydroxy groups) and also showed a higher grade of colorfastness to light. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 797–805, 2002; DOI 10.1002/app.10336  相似文献   

5.
The adsorption properties, including the adsorption kinetics, adsorption isotherms, and adsorption selectivity, of newly formed chelating resins that contained a heterocyclic functional group and a hydrophilic spacer arm of poly(ethylene glycol) [polystyrene–diethylene glycol–2‐amino‐5‐methylthio‐1,3,4‐thiadizole (PS–DEG–AMTZ) and polystyrene–triethylene glycol–2‐amino‐5‐methylthio‐1,3,4‐thiadizole (PS–TEG–AMTZ)] were studied in detail. The results show that the adsorption kinetics of PS–DEG–AMTZ and PS–TEG–AMTZ for Hg2+ and Ag+ could be described by a pseudo‐second‐order rate equation. The introduction of a spacer arm between the polymeric matrix and functional group was beneficial for increasing the adsorption rates. The apparent activation energies of the resins for Hg2+ and Ag+ were within 20.89–32.32 kJ/mol. The Langmuir model could describe the isothermal process of Hg2+ and Ag+. The competitive adsorption of the resins for Hg2+ and Ag+ in binary mixture systems was also investigated. The results show that Hg2+ and Ag+ were adsorbed before the other metal ions, such as Cu2+, Zn2+, Fe3+, Cd2+, and Pb2+, under competitive conditions. Five adsorption–desorption cycles were conducted for the reuse of the resins. The results indicate that these two resins were suitable for reuse without considerable changes in the adsorption capacity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Amino‐terminated anionic aqueous‐based polyurethane (PU) dispersion was obtained from NCO‐terminated PU prepolymer, which was neutralized with an excess triethylamine (TEA) and chain extended by ethylenediamine (EDA) during water dispersion process. That PU prepolymer was obtained from a polyaddition reaction of isophorone diisocyanate (IPDI), polypropylene glycol‐2000 (PPG‐2000), and 2,2′‐dimethylol propanoic acid (DMPA). This aqueous‐based PU dispersion was treated with trimethylolpropane triglycidyl ether (TMPTGE) as a latent curing agent and resulted in a self‐cured PU resin on drying. A model ring‐opening curing reaction between oxirane group of TMPTGE with terminal amino group of PU was demonstrated by glycidol with n‐butyl amine. The physical and mechanical properties as well as thermogravimetric analyses of these self‐cured PU resins were evaluated in this article. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
The purpose of the study was to compare the effect of two photoinitiators, (?)camphorquinone (CQ) and 1‐phenyl‐1,2‐propanedione (PPD) on curing performance of light‐cure dental composite resins. Bisphenol A‐glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) monomer mixture was used as the resin matrix. The resin matrix was mixed with CQ and/or PPD along with 0.25% of 4‐(dimethyl amino) phenethyl alcohol (DMAPEA) catalyst. The effect of photoinitiator on curing performance was evaluated and compared in terms of properties such as depth of cure, diametral tensile strength (DTS), flexural strength (FS), flexural modulus (FM), vickers hardness number (VHN), water sorption (WS), and solubility of cured composite. Statistical evaluation using Analysis of Variance (single factor) showed that the photosensitization efficiency of CQ and PPD are comparable. However, their combination showed synergistic effect for properties such as DTS and solubility. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
The reactions of the formation of monosubstituted titanium ethylene, diethylene, and triethylene glycolates based on the interaction of glycols with tetrabutoxytitanium in solutions were investigated. It was shown that ethylene glycol predominantly forms cyclic structures: diethylene glycol, a mixture of cyclic and linear structures, and triethylene glycol, mainly linear structures. The comparative analysis of the reaction products showed that the most promising precursor for the synthesis of TiO2 is a titanium compound based on triethylene glycol.  相似文献   

9.
A series of segmented polyurethanes (PUs) were prepared, in which five different polyols and hexamethylene diisocyanate were used as soft segments, and 4,4′‐diphenylmethane diisocyanate, hydrophilic segment poly (ethylene glycol) 200 (PEG 200), and chain extender 1,4‐butanediol were used as hard segment. Morphology of the PUs was investigated using differential scanning calorimetry, wide angle X‐ray diffraction, polarizing microscopy, and transmission electron microscopy. Water vapor permeability of the membranes as a function of temperature was tested accordingly. Results show that the presence of PEG200 interferes the crystallization of hard segment in these PUs, and at the same time, increases phase compatibility between soft and hard segment in the PET‐PU. It leads to a lower crystal melting temperature and degree of crystallinity of soft segment in the segmented PU than those of pure polyols, and no crystallization existing in hard segment. A morphological model is proposed, that is, aggregated soft‐segment‐rich domains can be observed clearly in the PUs with high crystallinity in soft segment, while identifiable hard domains are well‐distributed in the soft segment domains in the PU with low crystallinity. Within the temperature range of crystal melting, water vapor permeability of the PU membranes increases significantly with increase of temperature. Such temperature‐sensitive property is triggered by crystal melting of soft segment. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A silicon‐containing water‐borne polyurethane (PU) polymer with hydroxyl side groups was synthesized that was stable in basic conditions and also capable of reacting with a reactive dye to form a covalently bonded dye molecule. The silicon‐containing anionic water‐borne PU prepolymer was synthesized from H12‐4,4′‐diphenylmethane diisocyanate (H12‐MDI), polytetramethylene glycol, polydimethylsiloxane (PDMS), 2,2′‐bis(hydroxymethyl), propionic acid (anionic centers), and triethyleneamine using the prepolymer mixing method. Water was then added to emulsify and disperse the resin to form an anionic water‐borne PU prepolymer. N‐(2‐Hydroxyethyl ethylene diamine) (HEDA) was used to extend the prepolymer to form a water‐borne PU polymer with a side chain of hydroxyl groups, which can further react with the reactive dye to form a dyed PU. The reactive dye of chlorosulfuric acid esters of sulfatoethyl sulfones can react with the water‐borne PU polymer. Behaviors of alkali resistance and dyeing properties were observed. In consideration of thermal properties, the dye‐grafted PU polymers exhibited lower glass‐transition temperatures for soft segments and hard segments than those without dye. Concerning mechanical properties, it was found that the modulus and the strength of the dyed PU polymers decreased with grafting of the dye molecule, but elongation at break was increased. The alkali resistance increased with PDMS content. For dye‐uptake properties, the percentage of dye grafting was over 90%. Also, the dye‐grafted PU exhibited a lower percentage of dye migration than that of polymers with ethylene diamine instead of HEDA as a chain extender, and showed greater colorfastness to light. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2045–2052, 2003  相似文献   

11.
Nonvolatile and nonhazardous acrylated epoxidized soybean oil (AESO) was investigated as a replacement for hazardous styrene in a commercial unsaturated polyester (UPE) resin [a mixture of styrene and a dicyclopentadiene (DCPD)‐modified UPE (DCPD–UPE)]. DCPD–UPE was prepared from ethylene glycol, diethylene glycol, maleic anhydride, and DCPD. Mixtures of AESO and DCPD–UPE [AESO–(DCPD–UPE) resins] were found to be homogeneous, easily pourable solutions at room temperature. The glass‐fiber‐reinforced composites from the AESO–(DCPD–UPE) resins were comparable or even superior to those from the mixture of styrene and DCPD–UPE in terms of the flexural and tensile strengths. The viscoelastic properties of the cured AESO–(DCPD–UPE) resins and the corresponding glass‐fiber‐reinforced composites were characterized by dynamic mechanical analysis. The viscosities and pot lives of the AESO–(DCPD–UPE) resins as a function of the temperature were studied. The curing mechanism of the AESO–(DCPD–UPE) resins is discussed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46212.  相似文献   

12.
Unsaturated polyester resin (UP) was prepared from glycolyzed oligomer of poly(ethylene terephthalate) (PET) waste based on diethylene glycol (DEG). New diacrylate and dimethacrylate vinyl ester resins prepared from glycolysis of PET with tetraethylene glycol were blended with UP to study the mechanical characteristics of the cured UP. The vinyl ester resins were used as crosslinking agents for unsaturated polyester resin diluted with styrene, using free‐radical initiator and accelerator. The mechanical properties of the cured UP resins were evaluated. The compressive properties of the cured UP/styrene resins in the presence of different vinyl ester concentrations were evaluated. Increasing the vinyl ester content led to a pronounced improvement in the compression strength. The chemical resistances of the cured resins were evaluated through hot water, solvents, acid, and alkali resistance measurements. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3175–3182, 2007  相似文献   

13.
Amino‐terminated and carboxyl‐containing polyurethane (PU) is prepared by an isocyanate‐terminated PU prepolymer process. Carboxyl‐containing epoxy resin is obtained from a half‐esterification of epoxy resin with maleic anhydride. These two aqueous resins are obtained after neutralization with triethylamine and dispersion into water phase, respectively. A latent curing agent (TMPTA‐AZ) is prepared by a Michael addition of aziridine with trimethylolpropane triacrylate (TMPTA). A self‐curing system of PU/epoxy hybrid is obtained from a blending of these two aqueous resins with latent curing agent. PU/epoxy hybrid is derived from two self‐curing reactions on drying. The first curing for hybridization between PU amino groups with oxirane groups of epoxy resin is via a ring‐opening reaction and the secondary curing takes place on carboxyl groups of PU/epoxy hybrid with aziridine of TMPTA‐AZ. The final properties of these dual self‐cured PU/epoxy hybrids are reported. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Abstract

Waste polyethylene terephthalate (PET) flakes were depolymerized by using ethylene glycol (EG), propylene glycol (PG), diethylene glycol (DEG), and triethylene glycol (TEG) in the presence of zinc acetate as catalyst. All glycolysis products were reacted with maleic anhydride and mixed with styrene monomer to get unsaturated polyester (UP) resins. Molecular weights of all synthesized UP resins were determined by end-group analysis. The curing characteristics such as gel time and maximum curing temperatures, and mechanical properties such as hardness, tensile strength, and elastic module of these resins were investigated. The waste PET resins were compared with the reference resins prepared with the same glycols and the properties of the resins were found to be compatible with the properties of the reference resins.  相似文献   

15.
Postconsumer PET bottles including water and soft‐drink bottles were depolymerized by glycolysis in excess glycols, such as ethylene glycol, propylene glycol, and diethylene glycol, in the presence of a zinc acetate catalyst. The obtained glycolyzed products were reacted with maleic anhydride and mixed with a styrene monomer to prepare unsaturated polyester (UPE) resins. These resins were cured using methyl ethyl ketone peroxide (MEKPO) as an initiator and cobalt octoate as an accelerator. The physical and mechanical properties of the cured samples were investigated. It was found that the type of glycol used in glycolysis had a significant effect on the characteristics of the uncured and cured UPE resins. Uncured EG‐based UPE resin was a soft solid at room temperature, whereas uncured PG‐ and DEG‐based resins were viscous liquids. In the case of the cured resins, the EG‐based product exhibited characteristics of a hard and brittle plastic, while the PG‐based product did not. The DEG‐based product exhibited characteristics of hard and brittle plastic after strain‐induced crystallization had occurred. In addition, it was also found that no separation of the type of bottles was needed before glycolysis, since UPE resins prepared from water bottles, soft‐drink bottles, and a mixture of both bottles showed the same characteristics. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 788–792, 2003  相似文献   

16.
A novel photosensitive low viscosity epoxy resin was synthesized by polyethylene glycol (PEG)‐modified bisphenol‐A epoxy resin (E51). The resin was modified by ethylene glycol, diethylene glycol, and different molecule weights (200,300,400) PEGs to optimize the minimum viscosity. FTIR was used to determine molecule structure. Cationic photoinitiator (UVI‐6976) mixed with modified resin (10 wt %), was utilized to boost the resin curing under UV light. The curing degree was beyond 90% within 40 s and the whole process was monitored by photo‐DSC. The modified resin diluted with ethylene glycol diglycidyl ether, was screen printed onto polyimide and polyethylene terephthalate substrate, and the properties of solder mask were up to China printed circuit association standard. The solder resist also meet all requirements under ink‐jet printing technology as the viscosity is under 60 mPa·s and the curing duration is <1 min. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Self‐emulsified water‐borne epoxy curing agent of nonionic type was prepared using triethylene tetramine (TETA) and derivative of epoxy resin as a capping agent, which was synthesized by liquid epoxy resin (E51) and polyethylene glycol (PEG), and the curing agent possessed emulsification and curing properties at the same time. The curing agent with good property of emulsifying liquid epoxy resin could be obtained under the condition of the molar ratio of PEG : E51 : TETA as 0.8 : 1 : 3.5 at 80°C for 5 h. The mean particle size of the emulsion liquid was about 220 nm with the prepared curing agent and epoxy resin at the mass ratio of 1 : 3. The structure of the emulsion‐type curing agent was confirmed by FTIR and 1H NMR spectra, and the mechanism of cured film formation was also analyzed by SEM photographs. The cured film prepared by the emulsion‐type curing agent and epoxy resin under ambient cure conditions showed good properties even at high staving temperature. This study provides useful suggestions for the application of the water‐borne epoxy resins in coating industry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2652–2659, 2013  相似文献   

18.
A series of liquid polyester polyols (PEs) from adipic acid (AA), phthalic anhydride (PA) and trihydroxymethylpropane (TMP), and such glycols as ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), butanediol (BD) and hexanediol (HD), were prepared. Polyurethanes (PUs) were obtained from the PEs and polyaryl polymethylene isocyanate (PAPI) at room temperature. The effects of the structures of the glycols on viscosity, glass transition temperature and crystallinity of the PEs, and the mechanical, thermal and boiling‐water‐resistant properties of PUs were studied. The experiments showed that the viscosities and glass transition temperatures of the PEs decreased as the length of the glycol chains increased. The polyester based on HD lost flowability because of crystallization. The tensile strength and hardness of the PUs obtained decreased with increasing the length of the glycol chains, while the resistance to thermal deformation and boiling water increased. Thermogravimetric analysis demonstrated that thermal degradation of the polyurethane based on DEG proceeded in one step and for the others in two steps. The initial degradation temperature of the polyurethane based on EG was the lowest and that of the polyurethane based on BD was the highest. The residue of the former at 450 °C was the greatest, while that of the latter was the lowest. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Unsaturated polyester (UP) resin is one of the major thermosetting resins and is very useful as a matrix resin of composite material for its processibility. UP resin, however, has several shortcomings: it is weak in alkalis, volume shrinkage occurs during the crosslinking reaction of the oligomeric UP resin with a styrene monomer, and it is also brittle. The mechanical properties of UP resin can be enhanced by blending it with various materials. In this study, polyurethane (PU) was used as a modifier to improve the toughness of the UP resin. The effect of the polyol molecular weight as a PU soft segment and the PU contents on the toughness of PU‐modified UP resins were studied. A UP/PU polymer network may occur through a reaction between an isocyanate group in the methyl diisocyanate (MDI) and a hydroxyl one in the UP molecules. The maximum toughness was observed at approximately 2 wt % of the PU content. These results can be rationalized by the incorporation of a rubbery PU segment into a brittle UP resin. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 735–740, 2002; DOI 10.1002/app.10169  相似文献   

20.
BACKGROUND: The aim of this work was to develop polyhydroxyalkanoates (PHAs) for blood contact applications, and to study their self‐assembly behavior in aqueous solution when the PHAs are incorporated with hydrophilic segments. To do this, poly(ester‐urethane) (PU) multiblock copolymers were prepared from hydroxyl‐terminated poly(ethylene glycol) (PEG) and hydroxylated poly[(R)‐3‐hydroxyalkanoate] (PHA‐diol) using 1,6‐hexamethylene diisocyanate as a coupling reagent. The PEG segment functions as a soft, hydrophilic and crystalline portion and the poly[(R)‐3‐hydroxybutyrate] segment behaves as a hard, hydrophobic and crystalline portion. In another series of PU multiblock copolymers, crystalline PEG and completely amorphous poly[((R)‐3‐hydroxybutyrate)‐co‐(4‐hydroxybutyrate)] behaved as hydrophobic and hydrophilic segments, respectively. RESULTS: The formation of a PU series of block copolymers was confirmed by NMR, gel permeation chromatography and infrared analyses. The thermal properties showed enhanced thermal stability with semi‐crystalline morphology via incorporation of PEG. Interestingly, the changes of the hydrophilic/hydrophobic ratio led to different formations in oil‐in‐water emulsion and surface patterning behavior when cast into films. Blood compatibility was also increased with increasing PEG content compared with PHA‐only polymers. CONCLUSION: For the first time, PHA‐based PU block copolymers have been investigated in terms of their blood compatibility and aggregation behavior in aqueous solution. Novel amphiphilic materials with good biocompatibility for possible blood contact applications with hydrogel properties were obtained. Copyright © 2008 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号