首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a fixed‐gain amplify‐and‐forward relaying under non‐ideal hardware is analyzed. The relaying system is impaired because of relay's power amplifier (PA) nonlinearity and in‐phase and quadrature‐phase (IQ) imbalance at a destination. Closed‐form expressions for outage probability as well as ergodic capacity approximation and its upper bound are derived. Also, the outage probability and the ergodic capacity asymptotic expressions in the high signal‐to‐noise ratio are deduced. For the first time, the joint influence of PA nonlinearity and IQ imbalance on the system in terms of outage probability, symbol error rate, and ergodic capacity is investigated. The results are compared with the respect to soft envelope limiter and traveling‐wave tube amplifier at the relay. Based on the analytical and the numerical results, important insights into the impact of IQ imbalance and nonlinearity of the aforementioned PA models on the system performance are gained as well as valuable information on the performance of practically deployed fixed‐gain amplify‐and‐forward relaying system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, an amplify‐and‐forward variable‐gain relayed mixed RF‐FSO system is studied. The considered dual‐hop system consists of a radio frequency (RF) link followed by a free space optical (FSO) channel. The RF link is affected by short‐term multipath fading and long‐term shadowing effects and is assumed to follow the generalized‐K fading distribution that approximates accurately several important distributions often used to model communication channels. The FSO channel experiences fading caused by atmospheric turbulence that is modeled by the gamma‐gamma distribution characterizing moderate and strong turbulence conditions. The FSO channel also suffers path loss and pointing error induced misalignment fading. The performance of the considered system is analyzed under the collective influence of distribution shaping parameters, pointing errors that result in misalignment fading, atmospheric turbulence, and path loss. The moment‐generating function of the Signal power to noise power ratio measured end‐to‐end for this system is derived. The cumulative distribution function for the Signal power to noise power ratio present between the source and destination receiver is also evaluated. Further, we investigate the error and outage performance and the average channel capacity for this system. The analytical expressions in closed form for the outage probability, symbol and bit error rate considering different modulation schemes and channel capacity are also derived. The mathematical expressions obtained are also demonstrated by numerical plots.  相似文献   

3.
Short range, low power, plug‐and‐play femtocell has carved a niche for itself because of its potential for higher rate indoor voice and data service, coverage enhancement over cell edges, high network capacity, and negligible greenhouse gas emission. The frequency reuse phenomenon in two‐tier cellular network subjects the cell‐edge macrouser to severe downlink interference from co‐channel deployed femtocells in the same province. Downlink power control approach is a recommended remedy to overcome such type of interferences. This paper proposes release‐11‐based maximum downlink power control (R‐11‐based MDPC) approach to protect macrouser's service from co‐channel interference. The feedback strategy incorporated in this paper is formulated by R‐11 of 3rd Generation Partnership Program for Long Term Evolution standard. Implementation of new R‐11‐based feedback strategy between femto‐base station and macro‐base station with MDPC approach ensures instantaneous power control with minimal feedback delay, higher signal‐to‐interference‐plus‐noise ratio (SINR), simple receiver module design, and better service availability. Simulation results of R‐11‐based MDPC approach clearly indicate reduced feedback delay, better power control with minimal interference, improved SINR, and negligible outage probability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We deal with power allocation (PA) and call admission control (CAC) under imperfect power control (IPC) in the reverse link of direct sequence‐code division multiple access systems for supporting multi‐class traffic. First, we briefly review the optimum PA scheme under perfect power control (PPC) and the CAC scheme subject to an outage constraint on the total composite received power. Then, we analyze the outage degradation due to the power control error when the optimum reference power levels under PPC are used. In order to mitigate the outage degradation, we would modify the reference power levels by incorporating a call dropping strategy and an outage‐lowering strategy into the optimum PA scheme under PPC. Also, we derive a constraint inequality to determine the reverse link capacity under IPC. Finally, through numerical analyses, we compute the modified reference power levels under IPC and evaluate the reverse link capacity under IPC. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the power allocation problem in decode‐and‐forward cognitive dual‐hop systems over Rayleigh fading channels. In order to optimize the performance of the secondary network in terms of power consumption, an outage‐constrained power allocation scheme is proposed. The secondary nodes adjust their transmit power subject to an average interference constraint at the primary receiver and an outage probability constraint for the secondary receivers while having only statistical channel knowledge with respect to the primary nodes. We compare this approach with a power allocation scheme based on instantaneous channel state information under a peak interference constraint. Analytical and numerical results show that the proposed approach, without requiring the constant interchange of channel state information, can achieve a similar performance in terms of outage probability as that of power allocation based on instantaneous channel knowledge. Moreover, the transmit power allocated by the proposed approach is considerably smaller than the power allocated by the method based on instantaneous channel knowledge in more than 50% of the time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Downlink power control algorithms for cellular radio systems   总被引:2,自引:0,他引:2  
Power control is an effective technique to reduce cochannel interference and increase capacity for cellular radio systems. Optimum centralized power control can minimize the outage probability, but requires the information of all link gains in real time, which is very difficult to successfully implement for a large system; besides, the computational complexity of an optimum power control algorithm makes it impractical for real implementations. We propose some centralized power control algorithms with reasonable computational complexity. One of the algorithms, called the SMIRA algorithm, has an outage probability that is very close to the minimum. We also study a class of distributed power control algorithms that can achieve a balanced carrier-to-interference ratio with probability one. Among the class of algorithms, we found that the one proposed by Grandhi, Vijayan, and Goodman (1992), gives the minimum outage probability  相似文献   

7.
An integrated multi‐beam satellite and multi‐cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter‐component interference. The objective of the proposed scheme is to mitigate this inter‐component interference by optimizing the total transmission power — the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy‐efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.  相似文献   

8.
This paper considers a cognitive radio network where a secondary user (SU) coexists with a primary user (PU). The interference outage constraint is applied to protect the primary transmission. The power allocation problem to jointly maximize the ergodic capacity and minimize the outage probability of the SU, subject to the average transmit power constraint and the interference outage constraint, is studied. Suppose that the perfect knowledge of the instantaneous channel state information (CSI) of the interference link between the SU transmitter and the PU receiver is available at the SU, the optimal power allocation strategy is then proposed. Additionally, to manage more practical situations, we further assume only the interference link channel distribution is known and derive the corresponding optimal power allocation strategy. Extensive simulation results are given to verify the effectiveness of the proposed strategies. It is shown that the proposed strategies achieve high ergodic capacity and low outage probability simultaneously, whereas optimizing the ergodic capacity (or outage probability) only leads to much higher outage probability (or lower ergodic capacity). It is also shown that the SU performance is not degraded due to partial knowledge of the interference link CSI if tight transmit power constraint is applied.  相似文献   

9.
In this paper, we present the performance of selective combining decode‐and‐forward relay networks in independent and non‐identically distributed Nakagami‐n and Nakagami‐q fading channels by using the best–worse and the decoding‐set approaches. The outage probability, moment generation function, symbol error probability and average channel capacity are derived in closed‐form using the signal to noise ratio (SNR) statistical characteristics. After that, we analyze the outage probability at high SNRs, and then, we optimize it. Beside the optimum method, we have proposed a sub‐optimum adaptive method. Also, we derive the outage probability for the selection‐combining case with the direct link between the source and the destination. Finally, for comparison with analytical formulas, we perform some Monte‐Carlo simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
李小娅  谢显中  雷维嘉  张蓉 《信号处理》2014,30(11):1349-1356
基于不存在直接链路的具有不可信中继的三节点系统,本文在协作干扰模型中引入功率分配因子,对两种放大转发因子下系统的中断概率和遍历保密容量进行了计算及对比分析。首先,系统采用平均放大因子,推导出其保密中断概率;然后,在引入同样功率分配因子的基础上,系统改用自适应瞬时放大因子,得出保密中断概率的下界;为了对比,本文接着给出了系统两种情况下的遍历保密容量;最后,仿真验证了中断概率和遍历保密容量计算的准确性,数值仿真表明引入功率分配因子可减小系统的中断概率和提高系统的遍历保密容量,瞬时放大因子下系统性能较平均放大因子下更好。   相似文献   

11.
The outage performance of the amplify‐and‐forward relaying strategies over mutually uncorrelated extended generalized‐K fading channels is addressed in this paper. The attention is dedicated to the analyses of the noise‐limited and also interference‐limited environment. The new analytical expression for outage probability of observed relaying system in the presence of thermal noise is derived using the method for approximating equivalent signal‐to‐noise ratio. In addition, the outage performance is studied for the dual‐hop system when only the single dominant co‐channel interference is inherent at the relay and destination node. The correctness of the proposed mathematical derivations is verified by simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Performance of optimum transmitter power control in cellular radiosystems   总被引:2,自引:0,他引:2  
Most cellular radio systems provide for the use of transmitter power control to reduce cochannel interference for a given channel allocation. Efficient interference management aims at achieving acceptable carrier-to-interference ratios in all active communication links in the system. Such schemes for the control of cochannel interference are investigated. The effect of adjacent channel interference is neglected. As a performance measure, the interference (outage) probability is used, i.e., the probability that a randomly chosen link is subject to excessive interference. In order to derive upper performance bounds for transmitter power control schemes, algorithms that are optimum in the sense that the interference probability is minimized are suggested. Numerical results indicate that these upper bounds exceed the performance of conventional systems by an order of magnitude regarding interference suppression and by a factor of 3 to 4 regarding the system capacity. The structure of the optimum algorithm shows that efficient power control and dynamic channel assignment algorithms are closely related  相似文献   

13.
A decode‐and‐forward system with an energy‐harvesting relay is analyzed for the case when an arbitrary number of independent interference signals affect the communication at both the relay and the destination nodes. The scenario in which the relay harvests energy from both the source and interference signals using a time switching scheme is analyzed. The analysis is performed for the interference‐limited Nakagami‐m fading environment, assuming a realistic nonlinearity for the electronic devices. The closed‐form outage probability expression for the system with a nonlinear energy harvester is derived. An asymptotic expression valid for the case of a simpler linear harvesting model is also provided. The derived analytical results are corroborated by an independent simulation model. The impacts of the saturation threshold power, the energy‐harvesting ratio, and the number and power of the interference signals on the system performance are analyzed.  相似文献   

14.
In this paper, we propose two schemes based on a full‐duplex network‐coded cooperative communication (FD‐NCC) strategy, namely, full‐duplex dynamic network coding (FD‐DNC) and full‐duplex generalized dynamic network coding (FD‐GDNC). The use of full‐duplex communication aims at improving the spectrum efficiency of a two‐user network where the users cooperatively transmit their independent information to a common destination. In the proposed FD‐NCC schemes, the self‐interference imposed by full‐duplexing is modeled as a fading channel, whose harmful effect can be partially mitigated by interference cancellation techniques. Nevertheless, our results show that, even in the presence of self‐interference, the proposed FD‐NCC schemes can outperform (in terms of outage probability) the equivalent half‐duplex network‐coded cooperative (HD‐NCC) schemes, as well as traditional cooperation techniques. Moreover, the ?‐outage capacity, that is, the maximum information rate achieved by the users given a target outage probability, is evaluated. Finally, we examine the use of multiple antennas at the destination node, which increases the advantage of the FD‐NCC (in terms of the diversity‐multiplexing trade‐off and ?‐outage capacity).  相似文献   

15.
Recently, cooperative relaying techniques have been integrated into spectrum‐sharing systems in an effort to yield higher spectral efficiency. Many investigations on such systems have assumed that the channel state information between the secondary transmitter and primary receiver used to calculate the maximum allowable transmit secondary user transmit power to limit the interference is known to be perfect. However, because of feedback delay from the primary receiver or the time‐varying properties of the channel, the channel information may be outdated, which is an important scenario to cognitive radio systems. In this paper, we investigate the impact of outdated channel state information for relay selection on the performance of partial relay selection with amplify and forward in underlay spectrum‐sharing systems. We begin by deriving a closed‐form expression for the outage probability of the secondary network in a Rayleigh fading channel along with peak received interference power constraint and maximum allowable secondary user transmit power. We also provide a closed‐form expression for the average bit‐error rate of the underlying system. Moreover, we present asymptotic expressions for both the outage probability and average bit‐error rate in the high signal‐to‐noise ratio regime that reveal practical insights on the achievable diversity gain. Finally, we confirm our results through comparisons with computer simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we analyze the performance of cognitive amplify‐and‐forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi‐antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information‐assisted AF mode, and the signals undergo independent Nakagami‐m fading. In particular, closed‐form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami‐m fading are presented. More importantly, asymptotic closed‐form expressions for the outage probability and SER are derived. These tractable closed‐form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Outage analysis plays a vital role in wireless systems to determine reliable transmission and effective communication. Incremental hybrid decode‐amplify‐forward (IHDAF) relay offers a way of meeting the challenges of capacity and coverage improvement with great potential in cooperative communication networks. Therefore, opportunistic incremental hybrid relaying must be integrated with coding schemes to achieve full diversity. In this paper, the outage behavior of polar coded and distributed coded cooperative relaying schemes is analyzed. Simulation results show that opportunistic incremental HDAF using polar code offers an outage capacity of 17 b/s/Hz for 4 × 4 multiantenna and 45 b/s/Hz in 8 × 8 multiantenna systems with an outage of 10?8 and 10?13, respectively. Moreover, the polar coded opportunistic IHDAF system in 8 × 8 MIMO achieves 2 and 6 dB higher gains compared with amplify‐and‐forward (AF) and decode‐and‐forward (DF) relaying schemes. The closed‐form expression for outage probability has been derived through Marcum‐Q approximations and processed through Monte Carlo simulations.  相似文献   

18.
In this paper, we present an analytical approach for the evaluation of the impact of power control errors on the reverse link of a multicell direct sequence code-division multiple access (CDMA) system with fast power control under multipath fading. Unlike many previous papers, the joint effect of multipath fading and fast power control on interference statistics is explicitly accounted for and mobiles are assumed to connect to a base station according to a minimum attenuation criterion. Both the average bit error rate (BER) and the outage probabilities that a user experiences are estimated. The results have been used to evaluate the system capacity from two points of view. First, the maximum capacity supported by the system in order to maintain an average BER below a prescribed level has been calculated. Second, the maximum capacity possible to ensure that the outage probability does not exceed a set limit is analyzed. Capacity is shown to be significantly affected by the imperfections of power control. Our results can be used to quantify the relative capacity loss due to fast power control errors in a cellular CDMA network affected by slow fading, multipath fading, and cochannel interference.  相似文献   

19.
In this work, we investigate the performance of a dual‐hop cooperative network over α?μ fading channels with the presence of co‐channel interference (CCI) at both the relay and destination nodes. Amplify‐and‐forward (AF) relaying is considered in the relay node. The upper bound of the signal‐to‐interference‐plus‐noise ratio (SINR) of the dual‐hop relay link is used to determine the system performance. The probability density function (PDF) and the cumulative distribution function (CDF) of the upper bound of the SINR are analyzed. The system performance is determined in terms of the outage and error probabilities. Numerical results are used to present the performance analysis of the system.  相似文献   

20.
Femtocell technology has been drawing considerable attention as a cost‐effective means of improving cellular coverage and capacity. However, under co‐channel deployment, femtocell system in dense environment may incur high uplink interference to existing macrocells and experiences strong inter‐cell interference at the same time. To manage the uplink interference to macrocell, as well as the inter‐cell interference, this paper proposes a price‐based uplink interference management scheme for dense femtocell systems. Specifically, on the one hand, to guarantee the macrocell users' quality of service, the macrocell base station prices the interference from femtocell users (FUEs) subject to a maximum tolerable interference power constraint. On the other hand, the inter‐cell interference is also taken into consideration. Moreover, a Stackelberg game model is adopted to jointly study the utility maximization of the macrocell base station and FUEs. Then, in order to reduce the amount of information exchange, we design a distributed power allocation algorithm for FUEs. In addition, admission control is adopted to protect the active FUEs' performance. Numerical results show that the price‐based interference management scheme is effective. Meanwhile, it is shown that the distributed power allocation combined with admission control is capable of robustly protecting the performance of all the active FUEs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号