首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are many factors determining the concentration of volatile organic compounds (VOCs) in indoor air. On the basis of 601 population-based measurements we develop an explicit exposure model that includes factors, such as renovation, furniture, flat size, smoking, and education level of the occupants.As a novel method for the evaluation of concentrations of indoor air pollutants we use quantile regression, which has the advantages of robustness against non-Gaussian distributions (and outliers) and can adjust for unbalanced frequencies of observations. The applied bi- and multivariate quantile regressions provide (1) the VOC burden that is representative for the population of Leipzig, Germany, and (2) an inter-comparison of the effects of the studied factors and their levels.As a result, we find strong evidence for factors of general impact on most VOC components, such as the season, flooring, the type of the room, and the size of the apartment. Other impact factors are very specific to the VOC components. For example, wooden flooring (parquet) and new furniture increase the concentration of terpenes as well as the modifying factors high education and sampling in the child's room. Smokers ventilate their flats in an extent that in general reduces the VOC concentrations, except for benzene (contained in tobacco smoke), which is still higher in smoking than in non-smoking flats. Very often dampness is associated with an increased VOC burden in indoor air.An investigation of mixtures emphasises a high burden of co-occurring terpenes in very small and very large apartments.  相似文献   

2.
Ambient concentrations of volatile organic compounds (VOC) and nitrogen dioxide (NO2) were measured by means of passive sampling at 40 sampling points in a medium-size city in Northern Spain, from June 2006 to June 2007. VOC and NO2 samplers were analysed by thermal desorption followed by gas chromatography/mass-selective detector and by visible spectrophotometry, respectively. Mean concentrations of benzene, toluene, ethylbenzene, xylenes, propylbenzene, trimethylbenzenes, and NO2 were 2.84, 13.26, 2.15, 6.01, 0.59, 1.32 and 23.17 µg m− 3 respectively, and found to be highly correlated. Their spatial distribution showed high differences in small distances and pointed to traffic as the main emission source of these compounds. The lowest levels of VOC and NO2 occurred during summer, owing to the increase in solar radiation and to lower traffic densities. Mean concentrations of benzene and NO2 exceeded the European limits at some of the monitored points.  相似文献   

3.
This study examines the exposure level of passengers and drivers to VOC in public buses in a medium-size metropolitan area (Northern Spain). In-vehicle monitoring was performed on different routes, on peak and non-peak hours, during January and February 2007. A total of 112 air samples were collected onto adsorbent tubes and analysed by thermal desorption (TD) and gas chromatography/mass selective detector (GC/MSD) technique. Statistical differences were found among route to route concentrations, with those routes with major prevalence in the commercial area of the city displaying higher values; differences between peak and non-peak hours were also observed. A decrease in VOC concentrations was also registered during the weekend. BTEX ratios were estimated and found to be related to traffic emissions and similar for all the surveyed routes. Correlations confirmed traffic as the main emission source for BTEX and trimethylbenzene, their concentrations being highly associated to changes in meteorological conditions.  相似文献   

4.
A weekly monitoring campaign of volatile organic compounds (VOC), with single sampling of 24 h, was carried out in non-residential indoor environments such as libraries, pharmacies, offices, gymnasiums, etc., in order to evaluate the VOC concentrations to which people are exposed. Moreover, an outdoor sample was coupled to each indoor site to point out the influence of indoor sources. They were sampled with Radiello diffusive samplers for thermal desorption and analyzed by GC-MS. As already described in other papers, the VOC levels of most of the indoor sites were higher than that observed in the corresponding outdoor sites. For example, some sites showed a level of pollution that is ten times higher than their corresponding outdoor site. The monitored environments that had higher concentrations of the investigated VOC were the pharmacies, a newspaper stand, a copy center, and the coffee shops. Analysis of the weekly average concentrations of each pollutant and the use of literature allowed pointing out some site-specific characteristics that singled out possible sources of VOC. These results were verified analyzing the indoor-outdoor ratio (I/O) too. Newspaper stands were characterized by very high concentrations of toluene and pharmacies were characterized by high concentrations of aromatic compounds. PRACTICAL IMPLICATIONS: Indoor air pollution caused by volatile organic compounds (VOC) might affect human health at home as well as in public and commercial buildings. The main VOC sources in indoor environments are human activities, personal care products, smoking, house cleaning products, building products, and outside pollution. To preserve human health it is necessary to evaluate the average concentrations of VOC to which people are exposed and to identify the main sources of indoor pollution by means of suitable indoor monitoring campaigns in several environments. These investigations allow pointing out the characteristic critical situations of some indoor environments or some other types of environments.  相似文献   

5.
6.
The occurrence and spatial-temporal variability of 25 volatile organic compounds (VOCs) was studied from May 1998 to November 2000 in the Scheldt estuary. Target VOCs were selected from lists of priority pollutants to the North Sea, and included chlorinated short-chain hydrocarbons (CHCs), monocyclic aromatic hydrocarbons (MAHs) and chlorinated monocyclic aromatic hydrocarbons (CMAHs). Samples were taken between Vlissingen and Temse over a 95 km trajectory, and analysed by purge-and-trap and high resolution gas chromatography-mass spectrometry. Data were attended by analyses deemed 'in control' by a rigorous quality assurance/quality control program, as proposed by Quality Assurance of Information for Marine Environmental Monitoring in Europe (QUASIMEME). CHCs were among the most commonly found VOCs in the estuary, ranging from a few ng l(-1) to several microg l(-1). Most analytes were traceable to a single input source in the upper part of the estuary, which is densely populated and highly industrialized. By contrast, the occurrence of MAHs resulted from contributions of a wide spectrum of sources. The CMAHs were less abundant in the water column, and were mainly detected as chlorobenzene and 1,4-dichlorobenzene. Concentrations of several priority VOCs have markedly decreased since 1995 owing to emission reduction efforts within international frameworks for the protection of the North Sea.  相似文献   

7.
An experimental project was conducted to investigate mold products, namely spores and volatile organic compounds (VOCs) in the cavity of full-scale stud wall assemblies. Twenty specimens were constructed and tested to inquire the capacity of wall cavities to restrain mold products, emanating from studs with 10% of their surface covered with mold, from penetrating into the indoor space. The tests were designed primarily to study the movement of spores. The project was subsequently extended to investigate the identification of microbial volatile organic compounds (MVOCs) and their transport through the building envelope. This paper presents the experimental design, testing procedure and a summary of the analysis conducted to identify mold related VOCs and their transport from the cavity to the indoor space, and the evaluation of the influence of experimental factors on this transport. Six experimental factors were investigated: air leakage path; mold presence; wall construction configurations (insulation, vapor barrier and sheathing material) and ambient conditions (dry and wet conditions). The chemical analysis of VOCs (volatile organic compounds) was performed using gas chromatography/mass spectrometry (GC/MS). Results are analyzed using multiple regression analysis to identify the mold related VOCs, and to determine the transport through the building envelope. Five VOCs are confirmed to be related to the mold presence in the cavity and the transport of these MVOCs is supported by the data. However, no significant effect of the construction factors on MVOC transport is detected.  相似文献   

8.
This paper presents the results of a factorial experiment design analysis to investigate volatile organic compounds (VOC) adsorption on a ceiling tile. The impacts of three factors, VOC gas phase concentration, relative humidity, and VOC type, as single parameters and as a combination, on adsorption have been investigated. Cyclohexane, toluene, ethyl acetate, isopropyl alcohol and methanol were the five VOCs used in this study. A factor significant level was determined through evaluating its F value and comparing it with the critical value of F distribution at 95% confidence level. It was found that: (i) neither the relative humidity and gas phase concentration nor any interaction effect between them had significant impacts on toluene adsorption on the ceiling tile; (ii) the adsorption isotherm appeared to be linear for the non-polar compounds and non-linear for the semi-polar and polar compounds; (iii) no significant impact of relative humidity on adsorption was observed for most VOC compounds except for methanol; and (iv) the ceiling tile had the highest adsorption capacity toward the polar compounds, followed by the aromatic compounds and aliphatic compounds. In addition, the statistical analysis regarding the experimental results of toluene as a single compound or as a part of a mixture showed that toluene adsorption capacity on the ceiling tile as a single compound was higher than as a part of a mixture. PRACTICAL IMPLICATIONS: Building materials and furnishings may act as source and sink of VOCs in the indoor environment. In this study, a factorial experiment design analysis technique was used to show the impact of three factors, VOC gas phase concentration, relative humidity, and VOC type, as single parameters and as a combination, on the adsorption process (sink effect). The aim was to better understand the interaction between these parameters and to verify the common assumptions made in the model development and measurement of indoor air quality.  相似文献   

9.
高彩凤  张欢  王斌  由世俊 《暖通空调》2006,36(7):106-109
为研究办公楼装修后室内挥发性有机物的释放特性,利用活性炭吸附采样与气相色谱分析相结合的方法,跟踪监测了天津市某办公楼四个典型房间的室内污染物浓度。得出了装修后室内污染物浓度的变化规律,即污染物浓度随时间推移而降低,其间可能会由于房间温度、相对湿度和气流组织的变化而出现短暂的起伏。  相似文献   

10.
The background concentrations of some volatile organic compounds in urban and rural English locations have been analysed by gas chromatography after concentration on active carbon. A similar pattern of concentrations was measured at all locations. The results show broad agreement with those of similar analyses of Paris, Zurich, and Houston, but are at variance with those reported for Leningrad.  相似文献   

11.
挥发性有机化合物在复合衬里中的一维扩散解   总被引:5,自引:0,他引:5       下载免费PDF全文
土工膜和粘土衬里组成的复合衬里已广泛用于填埋场的防渗。有机挥发性化合物在复合衬里中迁移时,其主要的机理是分子扩散作用。本文建立了有机挥发性化合物在复合衬里中的一维扩散模型,并得到了解析解。将该解析解和以往给出的数值解法作了比较,发现两者得到的结果较为接近,从而验证了本文解的可靠性。基于本文计算模型,分析了三种常用复合衬里对挥发性有机化合物的防渗性能。研究发现对于挥发性有机化合物甲苯,土工膜和GCL组成的复合衬里的浸出液总量要比土工膜和较厚粘土衬里组成的复合衬里大好几个量级。  相似文献   

12.
Moulds can both degrade the materials and structures they colonise and contribute to the appearance of symptoms and diseases in the inhabitants of contaminated dwellings. Only few data have compared the levels of contamination in urban and rural environments and the results are not consistent. The aim of this study was to use a fungal contamination index, based on the detection of specific Microbial Volatile Organic Compounds (MVOC), to determine the exposure to moulds of individuals living in urban and rural dwellings. For this purpose, 94 dwellings (47 in an urban setting in Clermont-Ferrand and 47 in rural areas of the Auvergne region, France) were studied.By demonstrating marked disparities between the proportion of visible contamination (19%) and that of active, visible and/or hidden contamination (59%) and the fact that almost all visible contamination was identified by MVOC, we were able to show that use of the index seemed relevant to confirm the actual presence of fungal contamination in a dwelling. Furthermore, it was possible to demonstrate a relationship between moulds and the presence of water on surfaces (condensation, infiltrations, water damage, etc.). A higher proportion of positive fungal contamination index in rural homes was observed compared to the proportion in urban ones (68% versus 49%; p < 0.05).  相似文献   

13.
Polycyclic aromatic hydrocarbons (PAHs) were determined in tissues of wild mussels (Mytilus galloprovincialis) from the Galicia coast (NW Spain) in order to assess the extent of the environmental impact caused by the Prestige oil spill (November 13, 2002). Three sampling campaigns were carried out in February, June and November 2003 at 24 stations along the Galicia coast, from La Guardia (Pontevedra) to Ribadeo (Lugo). The spatial distribution of PAHs found in the first sampling period, clearly revealed the central area (Costa da Morte) as the most affected by the oil spill. In these stations, concentrations up to 7780 microg/kg dw of the sum of 13 parent PAHs were found 2-3 months after the spill. Molecular parameters within the aliphatic and aromatic fractions confirmed the presence of the Prestige oil in these samples. The levels markedly decreased at most of the stations in the second sampling and recovered to levels found before the spill in November 2003, 1 year after the accident (29-279 microg/kg dw, av. 133+/-83 microg/kg dw). However, a certain increase was observed in some sites which could be related to the remobilization of oil residues from still unclean intertidal spots or sediments due to the winter marine weather conditions.  相似文献   

14.
An inventory describing the fluxes of volatile organic compounds (VOCs), isoprene and monoterpenes, and other VOCs (OVOCs) from the biosphere to the atmosphere, has been constructed within the framework of the ESCOMPTE project (fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions). The area concerned, located around Berre-Marseilles, is a Mediterranean region frequently subject to high ozone concentrations. The inventory has been developed using a fine scale land use database for the year 1999, forest composition statistics, emission potentials from individual plant species, biomass distribution, temperature and light intensity. The seasonal variations in emission potentials and biomass were also taken into account. Hourly meteorological data for 1999 were calculated from ALADIN data and these were used to predict the hourly isoprene, monoterpene and OVOC fluxes for the area on a 1 kmx1 km spatial grid. Estimates of annual biogenic isoprene, monoterpene and OVOC fluxes for the reference year 1999 were 20.6, 38.9 and 13.3 kt, respectively, Quercus pubescens, Quercus ilex, Pinus halepensis and garrigue vegetation are the dominant emitting species of the area. VOC emissions from vegetation in this region contribute approximately 94% to the NMVOC (non-methane volatile organic compounds) of natural origin and are of the same order of magnitude as NMVOC emissions from anthropogenic sources. These results complete the global ESCOMPTE database needed to make an efficient strategy for tropospheric ozone reduction policy.  相似文献   

15.
Carbon monoxide (CO), nitrogen oxide (NO(x)), hydrocarbon (HC), sulfur oxide (SO(2)), particulate matter <10 microm (PM(10)), and 57 VOC species of emissions were confirmed in a freeway tunnel in southern Taiwan. Emission factors were 1.89 (CO), 0.73 (NO(x)), 0.46 (HC), 0.02 (SO2) and 0.06 (PM(10)) g/km-vehicle for all vehicle fleets. Heavy-duty truck and trailer vehicles contributed 20% of the emissions on workdays and 9.5% on weekends in this study. Paraffins and aromatics were the main VOC groups in the tunnel. Isopentane, toluene, n-pentane, isoprene, 2,3-dimethylbutane, acetone, 2-methylpentane, 1-hexene, 1,2,4-trimethybenzene, 1-butene and propene emissions were the major VOC species. Their emission factors were over 10 mg/km-vehicle. Rainfall and high humidity in the tunnel could have reduced the VOC concentrations and increased the portion of aromatics. In addition to paraffins, olefins, and aromatic compounds, oxygenated compounds (i.e., acetone) were found. The pollutant ratios between the inside center and the outside of the tunnel were about 2-3 for CO, SO2, and PM(10) and 42 for NO(x). In addition, the emission factors of the vehicles could reflect real-world vehicle emissions on the highway and be used as baseline information for development of a vehicle control strategy.  相似文献   

16.
Volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds are the major organic pollutants in the atmosphere. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan area of Hong Kong. A 12-month monitoring program for VOCs, PAHs and carbonyl compounds was performed at a roadside urban station at Hong Kong Polytechnic University (HKPU) in order to determine the correlations of each selected pollutant. The monitoring program ran from 16 April 1999 to 10 April 2000 for a period of 1 year, and a 2-week winter intensive sampling was carried out during January 2000. Traditionally, emission sources are identified from organic compounds in air particulates. Since many of the gaseous and particulate phases of organic compounds are from the same sources, correlations between the major exhausts are to be expected. Therefore, it would be more effective to apportion the sources using the combined gaseous and particulate phases of organic compounds. Correlations of selected pollutants within two other toxic air pollutants (TAPs) monitoring stations in Tsuen Wan (TW) and Central/Western (CW) were analyzed. Good correlations were found between pollutants that came from vehicle exhaust, especially in intensive sampling periods at HKPU roadside station. This was because the washing out effect for particulates during rainy days and photochemical degradation during high solar radiation were minimized in wintertime.  相似文献   

17.
Ambient VOCs samples were collected at three locations (PolyU campus (PU), Kwun Tong (KT), Hok Tsui (HT)) in Hong Kong during the periods of November 2000-February 2001 and June 2001-August 2001. Also the concentrations of VOCs in Cross Harbor tunnel in Hong Kong were obtained in order to determine the vehicular sources of VOCs. Toluene was the most abundant VOC detected in Hong Kong. At the PU station, which is close to a main road, the concentrations of most VOCs were higher in summer than in winter. However, at the background location HT, the concentrations of all VOCs except tetrachloroethene were higher in winter than in summer. Regional physical dispersion/transportation and mixing depth may be the reasons for higher VOC concentrations in winter at HT. The BTEX (benzene:toluene:ethylbenzene:xylene) ratios of PU and KT during winter period were (1.9:10.1:1.0:1.8) and (1.9:10.4:1.0:1.5), and (0.9:8.3:1.0:2.2) and (0.8:29.6:1.0:1.8) for summer season, respectively. The xylene/ethylbenzene (X/E) ratio was used to assess the relative age of the air parcels in this study. The concentrations of VOCs in the atmosphere in Hong Kong were mainly affected by direct emissions from vehicles, evaporation of fuels, photochemical reactions and few industrial emissions. The BTEX ratio in the tunnel was 2:10.4:1:3.2. The BTEX ratios at PU and KT during the winter period were similar to that in tunnel (except for xylenes). The X/E ratio in the tunnel was higher than that in the ambient air. This indicated that the freshly emitted xylenes in the tunnel decayed at different rates from OH-oxidation in the atmosphere. Good BTEX correlations (r>0.8) were found at PU and KT in winter (**P<0.01). Vehicular exhaust was the dominant source at PU and KT stations, and less evaporation of fuel or additive occurred at low temperature in winter. Diurnal variations of mean BTEX concentrations at the roadside monitoring station (PU) showed two peaks associated with traffic density and vehicle type.  相似文献   

18.
A single-blinded study was performed to analyze whether indoor environments with and without mold infestation differ significantly in microbial volatile organic compounds (MVOC) concentrations. Air sampling for MVOC was performed in 40 dwellings with evident mold damage and in 44 dwellings, where mold damage was excluded after a thorough investigation. The characteristics of the dwellings, climatic parameters, airborne particles and air exchange rates (AER) were recorded. The parameters mold status, characteristics of the interiors and measured climatic parameters were included in the multiple regression model. The results show no significant association between most of the analyzed MVOC and the mold status. Only the compounds 2-methyl-1-butanol and 1-octen-3-ol indicated a statistically significant, but weak association with the mold status. However, the concentrations of the so-called MVOC were mainly influenced by other indoor factors. 2-Methylfuran and 3-methylfuran, often used as main indicators for mold damage, had a highly significant correlation with the smoking status. These compounds were also significantly correlated with the humidity and the AER. The compounds 3-methyl-1-butanol, 2-hexanone, 3-heptanone and dimethyl disulfide were weakly correlated with the recorded parameters, the humidity being the strongest influencing factor. Only 2-methyl-1-butanol and 1-octen-3-ol showed a statistically significant association with the mold status; however, only a small portion (10% in this case) of the total variability could be explained by the predictor mold status; they do not qualify as indicator compounds, because such minor correlations lead to a too excessive part of incorrect classifications, meaning that the diagnostic sensitivity and specificity of these compounds are too low. PRACTICAL IMPLICATIONS: The assumption that mold infestations might be detected by microbial VOC emissions must be considered with great reservation. The major part of the total variability of the measured MVOC concentrations originates from not known influencing factors and/or from factors not directly associated with the mold status of the dwellings (confounders). More specific and sensitive markers for the assessment of the mold status should be found, if the screening for mold infestations should be performed by volatile organic compounds.  相似文献   

19.
20.
Nail technicians are exposed to volatile organic compounds (VOCs) from nail products, but no studies have previously measured VOC biomarkers for these workers. This study of 10 nail technicians aimed to identify VOCs in nail salons and explore relationships between air concentrations and biomarkers. Personal and area air samples were collected using thermal desorption tubes during a work shift and analyzed using gas chromatography/mass spectrometry (GC/MS) for 71 VOCs. Whole blood samples were collected pre‐shift and post‐shift, and analyzed using GC/MS for 43 VOCs. Ventilation rates were determined using continuous CO2 measurements. Predominant air VOC levels were ethyl methacrylate (median 240 µg/m3), methyl methacrylate (median 205 µg/m3), toluene (median 100 µg/m3), and ethyl acetate (median 639 µg/m3). Blood levels were significantly higher post‐shift than pre‐shift for toluene (median pre‐shift 0.158 µg/L and post‐shift 0.360 µg/L) and ethyl acetate (median pre‐shift <0.158 µg/L and post‐shift 0.510 µg/L); methacrylates were not measured in blood because of their instability. Based on VOCs measured in these seven nail salons, we estimated that emissions from Greater Boston area nail salons may contribute to ambient VOCs. Ventilation rates did not always meet the ASHRAE guideline for nail salons. There is a need for changes in nail product formulation and better ventilation to reduce VOC occupational exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号