首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纵向抽运Tm,Ho:YLF微片激光器激光特性的研究   总被引:2,自引:1,他引:2  
从速率方程理论出发,得到了抽运功率阈值和激光输出功率的解析表达式。通过钛宝石激光器抽运Tm,Ho:YLF微片,获得90mW的2μm波长激光连续输出。得到了抽运功率和输出功率之间的关系以及抽运光与振荡光之间的转换效率关系。同时也给出了温度对激光输出效率的影响。  相似文献   

2.
为了获得高效率、小型化、稳定性好的激光器,种子激光器由激光二极管抽运Tm,Ho∶YLF微片获得单模输出。短腔的自由光谱区比较宽,易于选单纵模,微片厚度0.9mm,两端镀膜,构成微型谐振腔。微片置于杜瓦瓶中,采用液氮制冷的方式,在低温下工作,增加了输出激光的稳定性。利用光纤延时自拍法进行频率短期稳定度测量,得到单模激光器短期稳定度为2.6kHz/μs,利用示波器估测长期稳定度小于35MHz。获得2.067μm的单模输出,线宽小于40MHz。利用刀口法测量得到光束质量为1.082,最大单模输出功率为32.8mW,斜率效率达到25.2%,光-光转换效率达23.8%,功率输出不稳定性小于1%。  相似文献   

3.
通过钛宝石激光器泵浦Tm,Ho∶YLF微片,获得90mW的2μm波长激光连续输出.得到了泵浦功率和输出功率之间的关系以及泵浦光与振荡光之间的转换效率关系.同时也给出了温度对激光输出效率的影响.  相似文献   

4.
为了实现小型化、高功率、高效率连续2μm激光输出,采用中心波长792nm激光二极管(LD)抽运双掺杂Tm,Ho∶YLF晶体,将晶体封装在装有350mL液氮的杜瓦装置中,使其工作在77K温度条件下。光纤耦合激光二极管出纤功率14.8W,数值孔径0.3,芯径400μm。激光二极管端面抽运Tm,Ho∶YLF激光器,产生2.05μm线偏振连续激光输出,最大功率5.2W。由于Tm3+离子能级间的交叉弛豫效应导致的高抽运量子效率,实验获得的光-光转换效率为35%,斜度效率达到40%。采用双端面抽运结构,两个激光二极管注入功率29.6W时,Tm,Ho∶YLF激光器输出功率达10.2W,相当于光-光转换效率33%,斜度效率36%。  相似文献   

5.
为了实现小型化、高功率、高效率连续2μm激光输出,采用中心波长792nm激光二极管(LD)抽运双掺杂Tm.Ho:YLF晶体,将晶体封装在装有350mL液氮的杜瓦装置中.使其工作在77K温度条件下。光纤耦合激光二极管出纤功率14.8W.数值孔径0.3,芯径400μm。激光二极管端面抽运Tm,Ho:YLF激光器,产生2.05μm线偏振连续激光输出,最大功率5.2W。由于Tm^3-离子能级间的交叉弛豫效应导致的高抽运量子效率,实验获得的光-光转换效率为35%,斜度效率达到40%。采用双端面抽运结构.两个激光二极管注入功率29.6W时,Tm,Ho:YLF激光器输出功率达10.2W,相当于光光转换效率33%,斜度效率36%。  相似文献   

6.
研究了在低温条件下,利用功率为2 W的激光二极管(LD)抽运液氮制冷Tm(6%),Ho(0.5%):YLF激光器,产生波长为2.05 μm的线偏振连续激光输出,最大功率350 mW,光-光转换效率为20%.  相似文献   

7.
对激光二极管泵浦Tm, Ho∶YLF平平腔微片激光器进行了实验研究。在室温下获得 2μm连续激光输出,最大输出功率343mW,最大光- 光效率为16. 8% ,斜率效率为21. 8%。讨论了激光晶体的热效应以及激光模半径与泵浦光斑半径匹配对激光输出功率和输出光束质量的影响。  相似文献   

8.
通过钛宝石激光器泵浦Tm,Ho:YLF微片,获得90mW的2μm波长激光连续输出。得到了泵浦功率和输出功率之间的关系以及泵浦光与振荡光之间的转换效率关系。同时也给出了温度对激光输出效率的影响。  相似文献   

9.
激光二极管双端面抽运Tm:Ho:GdVO4 2 μm激光器   总被引:1,自引:2,他引:1  
报道了激光二极管(LD)双端面抽运Tm∶Ho∶GdVO4固体激光器,在2.049μm处获得连续(CW)和准连续(QCW)激光输出。激光二极管为光纤耦合输出,光纤芯径400μm,数值孔径0.22,输出波长805 nm。激光二极管额定输出功率27.7 W,均分为两束双端面抽运激光晶体。晶体尺寸为4 mm×4 mm×7 mm,Tm,Ho掺杂原子数分数分别为5%,0.5%。分析了Tm∶Ho能级系统的主要能级跃迁和能量转换损耗。为提高激光器的输出功率和转换效率,激光晶体采用液氮制冷。在重复频率5 kHz,10 kHz,20 kHz,调Q以及连续运行模式下,获得了9.4~10.1 W的激光输出,光-光转换效率为34%~36%。最大单脉冲能量为1.9 mJ,最大峰值功率为0.13 MW。讨论了抽运光功率和重复频率对激光脉宽的影响。  相似文献   

10.
激光二极管抽运的Tm, Ho: YLF单模激光器   总被引:3,自引:4,他引:3  
为了获得高效率、小型化、稳定性好的激光器,种子激光器由激光二极管抽运Tm, Ho: YLF微片获得单模输出.短腔的自由光谱区比较宽,易于选单纵模,微片厚度0.9mm,两端镀膜,构成微型谐振腔.微片置于杜瓦瓶中,采用液氮制冷的方式,在低温下工作,增加了输出激光的稳定性.利用光纤延时自拍法进行频率短期稳定度测量,得到单模激光器短期稳定度为2.6kHz/μs,利用示波器估测长期稳定度小于35MHz.获得2.067μm的单模输出,线宽小于40MHz.利用刀口法测量得到光束质量为1.082,最大单模输出功率为32.8mW,斜率效率达到25.2%,光-光转换效率达23.8%,功率输出不稳定性小于1%.  相似文献   

11.
激光二极管泵浦室温Tm,Ho:YLF微片激光器的实验研究   总被引:1,自引:0,他引:1  
对激光二极管泵浦Tm,Ho:YLF平平腔微片激光器进行了实验研究。在室温下获得2μm连续激光输出,最大输出功率343mw,最大光-光效率为16.8%,斜率效率为21.8%。讨论了激光晶体的热效应以及激光模半径与泵浦光斑半径匹配对激光输出功率和输出光束质量的影响。  相似文献   

12.
报道了一种激光二极管(LD)双末端抽运Tm:YLF激光器,在1.9 μm处获得了连续波(CW)输出。1.9 μm激光可用于抽运Ho晶体获得2 μm激光。在理论上,分析了掺Tm3+激光器的运转机制和能量转换损耗,计算出Tm:YLF激光器在理论上的斜率效率达到50%。在实验上,抽运源使用工作波长为792 nm的光纤耦合激光二极管,抽运光均分为两束双端抽运Tm:YLF晶体,两块晶体串接在折叠腔内。Tm:YLF 晶体的掺杂原子数分数为4%, 尺寸为3 mm×3 mm×12 mm。测量了输出镜在不同透射率情况下激光器的输出激光波长,当输出镜透射率T=26%时,在1.9μm处获得20.1 W的连续波激光输出,相应的抽运功率为75 W,阈值抽运功率为9 W,斜率效率为34%,光-光转换效率为27%。  相似文献   

13.
激光二极管抽运Nd∶GdVO_4微片激光器   总被引:1,自引:2,他引:1  
报道了一种新型激光二极管(LD)端面抽运Nd∶GdVO4微片激光器,测量了抽运输入功率与激光输出功率的关系,激光阈值功率为83 mW,在2 W的抽运功率下得到860 mW的1.064μm基横模连续激光输出,光-光转换效率为43%,最大斜度效率达到47%。  相似文献   

14.
2 μm Tm,Ho:YLF激光抽运ZnGeP2光参量振荡技术研究   总被引:4,自引:5,他引:4  
ZnGeP2晶体具有宽的透明范围(0.7~12 μm),较大的非线性系数(d36=75 pm/V),最高损伤阈值能量密度为10 J/em2,较高的热导率(0.18 W/(m·K)),因而非常适合作为高功率中红外光参量振荡器(OPO)晶体.理论上分析了ZnGeP2光参量振荡器相位匹配特性,实现3~5 μm连续调谐范围输出的Ⅰ类相位匹配角在52.5~55.2°之间.实验上,以15 W光纤耦合激光二极管(LD)抽运的2.05 μm高重复频率声光调Q Tm,Ho:YLF激光器作为抽运源,其最大平均功率4 W,脉冲宽度小于40 ns,脉冲重复频率100 Hz~10 kHz可调.为降低准三能级系统激光器阈值,提高激光脉冲能量抽取效率,Tm,Ho:YLF晶体采用液氮制冷方式,工作在77 K温度条件下.非线性频率转换晶体ZnGeP2长15 mm,55.7°切割,光参量振荡器谐振腔为平平腔,腔长约20 mm.在3.6 W的抽运功率下,脉冲重复频率10 kHz,实现了4.1 μm附近中红外激光输出,参量光脉冲宽度为20 ns,平均输出功率为0.7 W,光-光转换效率为20%,抽运光阈值功率为0.65 W.  相似文献   

15.
激光二极管侧面抽运Tm,Ho:LuLiF激光器的热效应   总被引:1,自引:0,他引:1  
报道了激光二极管(LD)三向侧面抽运Tm,Ho:LuLiF激光器热效应的实验研究.理论上计算了激光介质内抽运光强的分布,分析了不同抽运光束崾下,对抽运光强和均匀性的影响.利用有限元分析,模拟了抽运时介质内部温度分布轮廓图.将激光晶体热透镜效应作类透镜近似,进行实验测量.利用通过小孔的高斯光束光强变化,拟合出He-Ne光通过晶体前后的高斯光束形状;近似成高斯光束经薄透镜的变换,计算得出在抽运单脉冲能量3.3 J,脉冲重复频率10 Hz下,Tm,Ho:LuLiF晶体的热透镜焦距约为-2.3 m,实验结果与理论预测基本相符.  相似文献   

16.
2μmTm,Ho∶YLF激光抽运ZnGeP_2光参量振荡技术研究   总被引:1,自引:0,他引:1  
ZnGeP2晶体具有宽的透明范围(0.7~12μm),较大的非线性系数(d36=75pm/V),最高损伤阈值能量密 度为10J/cm2,较高的热导率(0.18W/(m·K)),因而非常适合作为高功率中红外光参量振荡器(OPO)晶体。理 论上分析了ZnGeP2光参量振荡器相位匹配特性,实现3~5μm连续调谐范围输出的Ⅰ类相位匹配角在52.5~ 55.2°之间。实验上,以15W光纤耦合激光二极管(LD)抽运的2.05μm高重复频率声光调QTm,Ho∶YLF激光 器作为抽运源,其最大平均功率4W,脉冲宽度小于40ns,脉冲重复频率100Hz~10kHz可调。为降低准三能级 系统激光器阈值,提高激光脉冲能量抽取效率,Tm,Ho∶YLF晶体采用液氮制冷方式,工作在77K温度条件下。 非线性频率转换晶体ZnGeP2长15mm,55.7°切割,光参量振荡器谐振腔为平平腔,腔长约20mm。在3.6W的抽 运功率下,脉冲重复频率10kHz,实现了4.1μm附近中红外激光输出,参量光脉冲宽度为20ns,平均输出功率为 0.7W,光 光转换效率为20%,抽运光阈值功率为0.65W。  相似文献   

17.
文中介绍了四路Cr, Tm, Ho∶YAG激光器在设定时序下轮流工作,顺序耦合进一根320μm的低OH- 石英光纤输出,可以成倍地提高Cr, Tm, Ho∶YAG激光治疗机的输出功率,从而能够适应不同的治疗目的和需要。在三路情况下,当单脉冲最大注入能量100J ,重频30Hz时,激光器直接输出功率50. 17W,光纤末端输出功率35. 65W,耦合效率71%。  相似文献   

18.
与800nm和1180nm泵浦带相比较,1565nm泵浦有效消弱了多能级快速非辐射跃迁以及能量上转换损耗。建立了1565nm激光泵浦Tm3 ∶Ho3 共掺石英光纤产生2μm激光的理论模型,给出系统完整的速率方程和功率传输方程,采用数值模拟的方法对理想条件下系统稳态特性进行分析。结果表明,采用1565nm激光作为泵浦源,能够获得高效率的激光输出。在泵浦功率为3W、光纤长度2.2m时,输出功率高达1.7W、量子效率57%、斜效率67%。这是目前此类光纤获得的较好转换效率。  相似文献   

19.
可调谐掺铥光纤激光器共振抽运的Ho:YLF固体激光器   总被引:4,自引:2,他引:2  
用包层抽运的宽带可调谐掺Tm光纤激光作为抽运源研究了Ho:YLF 2μm固体激光输出特性.利用光纤激光共振抽运固体激光增益介质的光纤-体块混合激光器技术可使得大部分热量产生于光纤中,体块激光介质中只有很少的量子亏损热,有效地降低了热产生,有利于实现高功率、高效率的2μm激光输出.研究了不同抽运波长下Ho:YLF激光的输出特性,并与激光晶体的吸收光谱进行对比,对最佳抽运波长与晶体吸收峰不一致的现象进行了分析.在最佳抽运波长下,当抽运功率为9.4 W时,得到5.3 W近衍射极限的TEM00模线偏振光输出,激光中心波长2066 nm,光束质量因子M2约为1.1,斜率效率达到70%.  相似文献   

20.
根据对 2 .1 μm波长Cr ,Tm ,Ho∶YAG激光器输出特性的实验研究 ,详细分析了腔长、输出镜透过率、全反镜曲率半径和水温等因素对激光器输出的影响。在镀银腔情况下 ,重频 5Hz时 ,激光阈值为 4 7J,斜效率为 1 .3% ,输入能量为 1 4 4J时 ,最大输出为 7.9W。重频 1 0Hz时 ,激光阈值为 4 5J,斜效率为 1 .1 % ,输入能量为 1 2 1J时 ,最大输出为 9.7W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号