首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用等体积浸渍法制备了Pt/HBeta催化剂,并在10 mL固定床反应装置上评价了反应温度和质量空速对Pt/HBeta催化正己烷临氢异构化反应的影响,在此基础上建立正己烷异构化反应动力学模型。结果表明:在 240~260  ℃内正己烷临氢异构化反应可以用拟一级动力学模型来描述,反应的活化能Ea=139.06 kJ/mol,指前因子A=7.3814×1013 h-1;建立了连串反应动力学模型,第一步反应活化能Ea=167.80 KJ·mol-1,A=7.2130×1016 h-1,第二步反应活化能Ea=118.34 KJ·mol-1,A=1.3053×1011 h-1;当反应温度大于260 ℃,拟一级动力学模型不再适合,修正后270 ℃时的反应级数为1.3,280  ℃时的反应级数为1.7。  相似文献   

2.
在涂层催化剂上甲醇水蒸气重整的本征动力学研究   总被引:3,自引:0,他引:3  
袁彪  于新海  王正东  涂善东 《石油化工》2005,34(11):1055-1059
使用环状模拟微型反应器,研究了在涂层催化剂上甲醇水蒸气重整的本征动力学。涂层催化剂为Cu50/Zn50[Ce5],在消除内外扩散影响的条件下,在478~508K范围内进行甲醇水蒸气重整的实验;利用线性最小二乘法,由实验数据确定双速率动力学模型参数。甲醇重整反应速率常数为3.492×1011,活化能为99.937kJ/mol;甲醇分解反应速率常数为8.126×1011,活化能为121.571kJ/mol。F统计检验的结果表明,所得本征动力学模型适用于涂层催化剂。  相似文献   

3.
1,1,1,3,3-五氯丁烷合成反应动力学的研究   总被引:2,自引:1,他引:1  
以Cu粉为催化剂、N,N-二甲基甲酰胺(DMF)为溶剂、CCl_4和2-氯丙烯为原料,进行调聚反应合成了1,1,1,3,3-五氯丁烷。考察了催化剂用量、反应压力、反应温度对合成反应的影响;同时研究了该合成反应的动力学。实验结果表明,适宜的1,1,1,3,3-五氯丁烷合成反应的条件为:催化剂用量0.028 mol,0.4 MPa,373 K,CCl_40.878 mol,2-氯丙烯0.595 mol,DMF用量1.040 mol。在此条件下采用假一级动力学方法确定,在353~393 K内,1,1,1,3,3-五氯丁烷合成反应为二级反应,表观活化能为76.8 kJ/mol,指数前因子为1.5×10~8,得到表观反应动力学方程。  相似文献   

4.
以膨胀计法研究了在乙醚溶剂中以正丁基锂引发的丁二烯聚合增长反应动力学。结果发现,增长反应速度对单体浓度的反应级数为1;对活性种浓度的反应级数在0.8—0.9之间,并随着温度的升高,反应级数增大,这说明在乙醚溶剂中,存在少量的缔合体。求得表观活化能56kJ/mol和真实潘化能41.8kJ/mol。根据金关泰等提出的反应机理,求出了生成1,2-和1,4-结构的分速度常数,分别为k_(1,2)=1.38×10~8e~(-9640/RT)和 k_(1,4)=1.28×10~9e~(-11300/RT).  相似文献   

5.
在固体碱 CaO/MgO 催化下,以精制菜籽油与甲醇为原料进行酯交换反应制备了生物柴油,用气相色谱法跟踪分析生物柴油(脂肪酸甲酯)的含量,考察生物柴油中脂肪酸甲酯的生成动力学。结果表明,反应速率动力学方程分3个阶段:反应开始为引发阶段,酯交换反应速率对菜籽油浓度为0.5级,逐步转变为增长阶段的2级反应,最终反应达到平衡阶段。脂肪酸甲酯引发阶段反应活化能为76.77 kJ/mol,频率因子为9.80×10~7(mol/L)~(0.5)/min;增长阶段反应活化能为29.31 kJ/mol,频率因子为6.19×10~3L/(mol·min)。该研究为固体碱催化菜籽油与甲醇酯交换反应的动力学提供了理论基础。  相似文献   

6.
制备了碳含量(w)为1.7%的待生剂作为焦炭反应的原料,在反应温度510~780 ℃区间内,开展了以制CO为目的的焦炭部分氧化本征反应动力学研究,获得了不同反应环境下碳转化速率的本征反应动力学参数。实验结果表明:在碳-水体系中,碳、水的反应级数为零级,碳气化反应的活化能和指前因子分别为161.23 kJ/mol和116.2 g/(g?s);在碳-氧-水体系中,当氧和水过量时,碳的反应级数为一级,氧、水的反应级数为零级,待生剂上碳含量(w)低于0.5%时,在510~665 ℃下碳气化反应的表观活化能和指前因子分别为38.22 kJ/mol和1.37 s-1;在碳-氧-水体系中,当碳和水过量时,氧的反应级数为一级,碳、水的反应级数为零级,碳气化反应的本征活化能和指前因子分别为79.74 kJ/mol和311 712 s-1;在反应温度低于800 ℃时,CO主要由碳和氧反应生成,待生剂上碳与氧反应初始生成CO与CO2的摩尔比λ与温度T的关系为:λ=8.31e-16 736/(RT)。  相似文献   

7.
以苯为溶剂,正丁基锂为引发剂,在充氮条件下,利用膨胀计进行了丁二烯聚合增长反应动力学研究。结果表明,增长反应速度对单体浓度呈一级关系;对引发剂浓度的反应级数(β)小1,并随聚合反应温度的上升而增加,其关系式为β=0.0285+5.292×10~(-3)t;求得表观反应速率常数的通式为k_(1.4)=6.898×10~(15)·e~(-24280/rRt),生成1,4和1,2-结构的表观分速率常数通式分别为k_(1.4)=3.565×10~(15)·e~(-23830/RT)和k_(1.2)2=2.083×10~(16)·e~(-26460/RT);此外,根据解离平衡常数K和温度t的关系,求得上述体系的解缔热△H=26.09kJ/mol,从而计算出真实活化能E=75.52kJ/mol;在苯溶剂中丁二烯聚合的1,2-结构含量,即B.与温度的关系式为:B_v=8.692+0.0223t。  相似文献   

8.
以环氧乙烷、甲醇和CO为原料,Co2(CO)8为催化剂,3-羟基吡啶为配位体,合成3-羟基丙酸甲酯。考察了反应温度、压力、环氧乙烷浓度、催化剂和配位体添加量等对环氧乙烷转化率和目的产物选择性的影响,得到的较适宜反应条件为:温度70℃,压力7.0MPa,n(环氧乙烷)/n(主催化剂)=100/1;n(配体)/n(主催化剂)=6/1;n(甲醇)/n(环氧乙烷)=6/1。在该条件下环氧乙烷转化率接近100%,对3-羟基丙酸甲酯的选择性达到93%。反应中环氧乙烷浓度对时间的微分与其浓度成正比,呈一级关系。用阿仑尼乌斯方程求得的反应速率常数为(0.2~0.61)×10-3min-1,表观活化能为72.75kJ·mol-1,指前因子为ko=4.97×107min-1。  相似文献   

9.
研究了H_2SO_4催化一缩二乙二醇(二甘醇)脱水环化生成1,4-二氧六环液相反应的速率与温度、H_2SO_4浓度的关系。测得H_2SO_4为1.84—4.00w%时,该反应的活化能为112.6±10.4kJ/mol,指前因子为3.6×10~9/s(1.1×10~3-2.5×10~(10)/s)。  相似文献   

10.
过氧化氢氧化邻苯二酚、对苯二酚反应动力学的研究   总被引:5,自引:4,他引:1  
张俊梅  冯惠生 《石油化工》2005,34(3):247-249
邻苯二酚、对苯二酚的过氧化反应是过氧化氢氧化苯酚联产苯二酚的副反应,为了减少羟化液中苯二酚的深度氧化,用乙酸和铁粉制备的Fe2+为催化剂,对邻苯二酚、对苯二酚单一物质的过氧化反应进行实验研究。实验结果表明,反应液中苯二酚浓度、过氧化氢浓度及催化剂浓度越高,邻苯二酚、对苯二酚的过氧化速率越快。由实验数据拟合得到邻苯二酚、对苯二酚过氧化反应宏观动力学的模型参数,其表观活化能分别为39.802,34.776kJ/mol,过氧化氢的反应级数分别为0.85,0.97。  相似文献   

11.
在银催化剂单管装置上对YS-8520银催化剂进行了驯化试验,考察了时间、氧含量和Cl因子等因素对催化剂活性和环氧乙烷(EO)选择性的影响。试验结果表明,在运行的起始阶段,YS-8520银催化剂活性很高、EO选择性略低,之后活性逐渐下降、EO选择性升高,因此需要在较低汽包温度、较高的Cl因子条件下缓慢调节工艺条件,使装置实现平稳运行;在装置投料初期Cl因子应控制在0.15~0.20,装置运行稳定后Cl因子应控制在0.07~0.15。在中国石化天津分公司环氧乙烷/乙二醇装置上YS-8520银催化剂的试验结果表明,装置运行3 a的EO平均选择性达到82.8%,比该装置上一次使用的YS-7银催化剂高3.2百分点。  相似文献   

12.
醋酸甲酯合成的非均相反应动力学   总被引:1,自引:1,他引:0  
以Amberlyst15强酸性阳离子交换树脂为催化剂,在间歇搅拌反应器中测定了甲醇与醋酸反应体系在不同温度(323.15~348.15 K)和催化剂浓度(23~59 g/L)下的拟均相反应动力学实验。实验结果表明,甲醇与醋酸酯化反应合成醋酸甲酯的反应为二级可逆反应;根据实验数据拟合得到动力学参数,平衡常数为K=20.09exp(1 603/T),正逆反应速率常数分别为k+=1.463×104exp(-53 160/RT)、k-=1.124×105exp(-63 740/RT);正负反应活化能分别为53.16,63.74 kJ/mol;在实验范围内,随反应温度的升高,反应速率增大,反应温度和反应速率二者关系符合Arrhenius方程。  相似文献   

13.
研究了固体超强酸催化剂SO4^2-/ZrO2及负载型SO4^2-/ZrO2-SiO2催化剂在催化正己烷异构化反应中的失活与再生问题。结果表明,在催化正己烷异构化反应过程中,催化剂SO4^2-/ZrO2和SO4^2-/ZrO2-SiO2均存在明显的失活现象。失活的主要原因是积炭覆盖了催化剂表面的超强酸中心,但可通过烧炭的方法除去表面的积炭而使催化剂再生。再生后的催化剂的活性并没有明显降低。催化剂SO4^2-/ZrO2-SiO2的催化活性明显低于SO4^2-/ZrO2,催化剂制备过程中焙烧温度有显著的影响。通过对催化剂积炭过程的动力学分析,提出了失活过程的模型,并依此计算了固体超强酸催化烷烃异构化反应的积炭反应的表观活化能。  相似文献   

14.
设计了乙烯选择性齐聚连续化反应装置,将硅胺基桥联双膦型配体铬配合物(PNSiP/CrCl3(THF)3)、改性甲基铝氧烷(MMAO)组成催化体系,考察了其催化乙烯选择性齐聚连续化反应性能,并对该反应动力学进行研究。结果表明:当反应温度为60 ℃、乙烯压力为5.0 MPa、氢气分压为0.2 MPa、连续化反应20 h时,该催化体系的催化活性可达46.13×106 g/(mol Cr·h);产物中1-己烯和1-辛烯的总选择性最高达到88.52%,固体产物聚乙烯(PE)质量分数为0.09%。PNSiP/Cr(Ⅲ)/MMAO催化体系在乙烯选择性齐聚连续化反应中具有催化活性高、副产物(甲基环戊烷+亚甲基环戊烷)少、固体低聚物少、可实现长周期运行的优点。对PNSiP/Cr(Ⅲ)/MMAO催化乙烯选择性齐聚连续化反应动力学方程进行拟合计算,得到该反应对主催化剂浓度的反应级数为1.32、对乙烯压力的反应级数为1.92;当主催化剂摩尔浓度为7.09 μmol/L、反应温度为40~60 ℃、压力为5.0 MPa时,该反应的表观活化能为109.7 kJ/mol。  相似文献   

15.
甲基橙褪色分光光度法测定亚硝酸根的动力学及机理探究   总被引:1,自引:0,他引:1  
研究了在酸性介质中,NO_2~-对溴酸钾氧化甲基橙褪色反应的催化作用,以及在一定的条件下反应的动力学性质,测定了反应的表现活化能为69.20KJ·mol~(-1),25℃时反应的速率常数为10.261×10~7,反应为3.5级反应。利用动力学参数探讨了反应机理,并测试了干扰离子对反应的影响。  相似文献   

16.
使用负载型金属镍催化剂对甲基乙烯基酮(MVK)进行了反应动力学研究。于反应温度125—160℃、常压下进行气相加氢试验,导出的动力学方程为: γ_(MVK)=k·P~(0.2)_(MVK)·P_H·P~(-0.5)_(MEK)[mol/g cat·min] 测出表观活化能E_■为44kJ/mol,求得阿累尼乌斯方程式中的指前因子A_0为9.20×10~3。式中γ_(MVK)表示反应速度,k为反应速度常数,P_(MVK)、P_H和P_(MEK)分别表示甲基乙烯基酮、氢和甲基乙基酮(MEK)的分压(atm)。  相似文献   

17.
FTIR法研究IPDI/DMPA的聚合反应动力学   总被引:1,自引:0,他引:1  
用傅里叶变换红外光谱 (FTIR)法研究了脂肪族水性聚氨酯乳液制备的关键反应 ,异佛尔酮二异氰酸酯(IPDI) /二羟甲基丙酸 (DMPA)的反应动力学 ,并探讨了催化剂二月桂酸二丁基锡对反应速率的影响。结果表明 :该体系反应属于二级反应 ,其表观活化能为 3 0 .1kJ/mol,催化剂的使用可大幅提高反应速率常数 ,但对表观活化能的降低程度不太大。  相似文献   

18.
对减压蜡油的浆态床加氢工艺条件进行了评价,并考察了减压蜡油的加氢脱硫和加氢脱氮动力学。研究结果表明,最佳的蜡油加氢工艺条件为反应温度360 oC、反应压力8 MPa、催化剂加入量(w)9 %、反应时间2 h左右。动力学研究结果表明:对于加氢脱硫反应,反应初期的表观活化能为100.44 kJ/mol;反应中期到末期,表观活化能为121.72 kJ/mol,这是由于不同类型的硫化物脱硫机理不同造成的;对于加氢脱氮反应,表观活化能为105.17 kJ/mol;在反应初期含氮化合物较难脱除,而在反应后期,烷基取代的二苯并噻吩类化合物为最难脱除的化合物。  相似文献   

19.
采用共沉淀法制备SO42-/ZrO2-Al2O3,等体积浸渍法制备Pt-SO42-/ZrO2-Al2O3固体超强酸催化剂,采用5mL连续固定床反应装置评价了反应温度、反应压力、氢/油体积比和体积空速对Pt-SO42-/ZrO2-Al2O3催化剂催化正己烷临氢异构化反应活性的影响。进行拟一级动力学模型验证,建立正己烷异构化一级反应网络动力学模型。结果表明:增加反应压力和体积空速,正己烷转化率降低;随着氢/油体积比、反应温度的升高,正己烷转化率提高。在180~200℃范围内,正己烷在Pt-SO42-/ZrO2-Al2O3催化剂上的临氢异构化反应可以视为简单拟...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号