首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myxococcus xanthus multicellular fruiting body development is initiated by nutrient limitation at high cell density. Five clustered point mutations (sasB5, -14, -15, -16, and -17) can bypass the starvation and high-cell-density requirements for expression of the 4521 developmental reporter gene. These mutants express 4521 at high levels during growth and development in an asgB background, which is defective in generation of the cell density signal, A signal. A 1.3-kb region of the sasB locus cloned from the wild-type chromosome restored the SasB+ phenotype to the five mutants. DNA sequence analysis of the 1.3-kb region predicted an open reading frame, designated SasN. The N terminus of SasN appears to contain a strongly hydrophobic region and a leucine zipper motif. SasN showed no significant sequence similarities to known proteins. A strain containing a newly constructed sasN-null mutation and Omega4521 Tn5lac in an otherwise wild-type background expressed 4521 at a high level during growth and development. A similar sasN-null mutant formed abnormal fruiting bodies and sporulated at about 10% the level of wild type. These data indicate that the wild-type sasN gene product is necessary for normal M. xanthus fruiting body development and functions as a critical regulator that prevents 4521 expression during growth.  相似文献   

2.
3.
4.
5.
Type IV pili are required for social gliding motility in Myxococcus xanthus. In this work, the expression of pilin (the pilA gene product) during vegetative growth and fruiting-body development was examined. A polyclonal antibody against the pilA gene product (prepilin) was prepared, along with a pilA-lacZ fusion, and was used to assay expression of pilA in M. xanthus in different mutant backgrounds. pilA expression required the response regulator pilR but was negatively regulated by the putative sensor kinase pilS. pilA expression did not require pilB, pilC, or pilT. pilA was also autoregulated; a mutation which altered an invariant glutamate five residues from the presumed prepilin processing site eliminated this autoregulation, as did a deletion of the pilA gene. Primer extension and S1 nuclease analysis identified a sigma54 promoter upstream of pilA, consistent with the homology of pilR to the NtrC family of response regulators. Expression of pilA was found to be developmentally regulated; however, the timing of this expression pattern was not entirely dependent on pilS or pilR. Finally, pilA expression was induced by high nutrient concentrations, an effect that was also not dependent on pilS or pilR.  相似文献   

6.
Overproduction of the capsular polysaccharide alginate appears to confer a selective advantage for Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The regulators AlgB and AlgR, which are both required as positive activators in alginate overproduction, have homology with the regulator class of two-component environmental responsive proteins which coordinate gene expression through signal transduction mechanisms. Signal transduction in this class of proteins generally occurs via autophosphorylation of the sensor kinase protein and phosphotransfer from the sensor to a conserved aspartate residue, which is present in the amino terminus of the response regulator. Recently, kinB was identified downstream of algB and was shown to encode the cognate histidine protein kinase that efficiently phosphorylates AlgB. However, we show here that a null mutation in kinB in a mucoid cystic fibrosis isolate, P. aeruginosa FRD1, did not block alginate production. The role of the conserved aspartate residue in the phosphorylation of AlgB was examined. The predicted phosphorylation site of AlgB (D59) was mutated to asparagine (N), and a derivative of an AlgB lacking the entire amino-terminal phosphorylation domain (AlgB delta1-145) was constructed. A hexahistidine tag was included at the amino terminus of the wild-type (H-AlgB), H-AlgB delta1-145, and mutant (H-AlgB.59N) AlgB proteins. These derivatives were purified by Ni2+ affinity chromatography and examined for in vitro phosphorylation by the purified sensor kinase protein, KinB. The results indicated that while KinB efficiently phosphorylated H-AlgB, no phosphorylation of H-AlgB delta1-145 or H-AlgB.D59N was apparent. An allelic exchange system was developed to transfer mutant algB alleles onto the chromosome of a P. aeruginosa algB mutant to examine the effect on alginate production. Despite the defect in AlgB phosphorylation, P. aeruginosa strains expressing AlgB.D59N or H-AlgB delta1-145 remained mucoid. The roles of the conserved aspartate residues in the phosphorylation of AlgR were also examined. As seen with AlgB, mutations in the predicted phosphorylation site of AlgR (AlgR.D54N and AlgR.D85N) did not affect alginate production. These results indicate that in vivo phosphorylation of AlgB and AlgR are not required for their roles in alginate production. Thus, the mechanism by which these response regulators activate alginate genes in mucoid P. aeruginosa appears not to be mediated by conventional phosphorylation-dependent signal transduction.  相似文献   

7.
Three independent Tn5-lac insertions in the S1 locus of Myxococcus xanthus inactivate the sglK gene, which is nonessential for growth but required for social motility and multicellular development. The sequence of sglK reveals that it encodes a homologue of the chaperone HSP70 (DnaK). The sglK gene is cotranscribed with the upstream grpS gene, which encodes a GrpE homologue. Unlike sglK, grpS is not required for social motility or development. Wild-type M. xanthus is encased in extracellular polysaccharide filaments associated with the multimeric fibrillin protein. Mutations in sglK inhibit cell cohesion, the binding of Congo red, and the synthesis or secretion of fibrillin, indicating that sglK mutants do not make fibrils. The fibR gene, located immediately upstream of the grpS-sglK operon, encodes a product which is predicted to have a sequence similar to those of the repressors of alginate biosynthesis in Pseudomonas aeruginosa and Pseudomonas putida. Inactivation of fibR leads to the overproduction of fibrillin, suggesting that M. xanthus fibril production and Pseudomonas alginate production are regulated in analogous ways. M. xanthus and Pseudomonas exopolysaccharides may play similar roles in a mechanism of social motility conserved in these gram-negative bacteria.  相似文献   

8.
9.
We have cloned and analysed the sequence of a putative histidine kinase, two-component gene (CaHK1) from Candida albicans. This gene encodes a 2471 amino acid protein (Cahk1p) with an estimated molecular mass of 281.8 kDa. A homology search of Cahk1p with other proteins in the databases showed that Cahk1p exhibits the greatest homology at its C-terminus with both the sensor and regulator components of prokaryotic and eukaryotic two-component histidine kinases. A further analysis of this homology showed that the Cahk1p possessed both sensor and regulator domains in the same polypeptide. Also, Cahk1p is likely to be a soluble protein. The sensor kinase domain of Cahk1p contains conserved motifs that are characteristic of all histidine kinase proteins, including the putative histidine which is believed to be autophosphorylated during activation, ATP binding motifs and others (F- and N-motifs), with unknown function. The Cahk1p regulator domain also contains conserved aspartate and lysine residues and the putative aspartate, which is secondarily phosphorylated by the autophosphorylated histidine. Finally, according to the codon usage frequency of the CaHK1 gene in comparison with other genes from C. albicans, there would appear to be a low level of expression of the gene.  相似文献   

10.
Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes.  相似文献   

11.
12.
13.
The Escherichia coli DnaA protein is a sequence-specific DNA binding protein that promotes the initiation of replication of the bacterial chromosome, and of several plasmids including pSC101. Twenty-eight novel missense mutations of the E. coli dnaA gene were isolated by selecting for their inability to replicate a derivative of pSC101 when contained in a lambda vector. Characterization of these as well as seven novel nonsense mutations and one in-frame deletion mutation are described here. Results suggest that E. coli DnaA protein contains four functional domains. Mutations that affect residues in the P-loop or Walker A motif thought to be involved in ATP binding identify one domain. The second domain maps to a region near the C terminus and is involved in DNA binding. The function of the third domain that maps near the N terminus is unknown but may be involved in the ability of DnaA protein to oligomerize. Two alleles encoding different truncated gene products retained the ability to promote replication from the pSC101 origin but not oriC, identifying a fourth domain dispensable for replication of pSC101 but essential for replication from the bacterial chromosomal origin, oriC.  相似文献   

14.
The nucleoside diphosphate kinase (NDP kinase) from Myxococcus xanthus has been purified to homogeneity and crystallized (J. Munoz-Dorado, M. Inouye, and S. Inouye, J. Biol. Chem. 265:2702-2706, 1990). In the presence of ATP, the NDP kinase was autophosphorylated. Phosphoamino acid analysis was carried out after acid and base hydrolyses of phosphorylated NDP kinase. It was found that the protein was phosphorylated not only at a histidine residue but also at a serine residue. Replacement of histidine 117 with a glutamine residue completely abolished the autophosphorylation and nucleotide-binding activity of the NDP kinase. Since histidine 117 is the only histidine residue that is conserved in all known NDP kinases so far characterized, the results suggest that the phosphohistidine intermediate is formed at this residue during the transphosphorylation reaction from nucleoside triphosphates to nucleoside diphosphates. Preliminary mutational analysis of putative ATP-binding sites is also presented.  相似文献   

15.
The full-length BIO2 cDNA from Arabidopsis thaliana was isolated using an expressed sequence tag that was homologous to the Escherichia coli biotin synthase gene (BioB). Comparisons of the deduced amino acid sequence from BIO2 with bacterial and yeast biotin synthase homologs revealed a high degree of sequence similarity. The amino terminus of the predicted BIO2 protein contains a stretch of hydrophobic residues similar in composition to transit peptide sequences. BIO2 is a single-copy nuclear gene in Arabidopsis that is expressed at high levels in the tissues of immature plants. Expression of BIO2 was higher in the light relative to dark and was induced 5-fold during biotin-limited conditions. These results demonstrate that expression of at least one gene in this pathway is regulated in response to developmental, environmental, and bio-chemical stimuli.  相似文献   

16.
Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle. Autochemotaxis, a process whereby cells release a self-generated signaling molecule, may be the principal mechanism facilitating directed motility in both the vegetative swarming and developmental aggregation stages of this life cycle. The process requires the Frz signal transduction system, including FrzZ, a protein which is composed of two domains, both showing homology to the enteric chemotaxis response regulator CheY. The first domain of FrzZ (FrzZ1), when expressed as bait in the yeast two-hybrid system and screened against a library, was shown to potentially interact with the C-terminal portion of a protein encoding an ATP-binding cassette (AbcA). The activation domain-AbcA fusion protein did not interact with the second domain of FrzZ (FrzZ2) or with two other M. xanthus response regulator-containing proteins presented as bait, suggesting that the FrzZ1-AbcA interaction may be specific. Cloning and sequencing of the upstream region of the abcA gene showed the ATP-binding cassette to be linked to a large hydrophobic, potentially membrane-spanning domain. This domain organization is characteristic of a subgroup of ABC transporters which perform export functions. Cloning and sequencing downstream of abcA indicated that the ABC transporter is at the start of an operon containing three open reading frames. An insertion mutation in the abcA gene resulted in cells displaying the frizzy aggregation phenotype, providing additional evidence that FrzZ and AbcA may be part of the same signal transduction pathway. Cells with mutations in genes downstream of abcA showed no developmental defects. Analysis of the proposed exporter role of AbcA in cell mixing experiments showed that the ABC transporter mutant could be rescued by extracellular complementation. We speculate that the AbcA protein may be involved in the export of a molecule required for the autochemotactic process.  相似文献   

17.
Myxococcus xanthus is a gram-negative soil bacterium which undergoes fruiting body formation during starvation. The frz signal transduction system has been found to play an important role in this process. FrzCD, a methyl-accepting taxis protein homologue, shows modulated methylation during cellular aggregation, which is thought to be part of an adaptation response to an aggregation signal. In this study, we assayed FrzCD methylation in many known and newly isolated mutants defective in fruiting body formation to determine a possible relationship between the methylation response and fruiting morphology. The results of our analysis indicated that the developmental mutants could be divided into two groups based on their ability to show normal FrzCD methylation during development. Many mutants blocked early in development, i.e., nonaggregating or abnormally aggregating mutants, showed poor FrzCD methylation. The well-characterized asg, bsg, csg, and esg mutants were found to be of this type. The defects in FrzCD methylation of these signaling mutants could be partially rescued by extracellular complementation with wild-type cells or addition of chemicals which restore their fruiting body formation. Mutants blocked in late development, i.e., translucent mounds, showed normal FrzCD methylation. Surprisingly, some mutants blocked in early development also exhibited a normal level of FrzCD methylation. The characterized mutants in this group were found to be defective in social motility. This indicates that FrzCD methylation defines a discrete step in the development of M. xanthus and that social motility mutants are not blocked in these early developmental steps.  相似文献   

18.
A new cell division gene, ftsN, was identified in Escherichia coli as a multicopy suppressor of the ftsA12(Ts) mutation. Remarkably, multicopy ftsN suppressed ftsI23(Ts) and to a lesser extent ftsQ1(Ts); however, no suppression of the ftsZ84(Ts) mutation was observed. The suppression of ftsA12(Ts), ftsI23(Ts), and ftsQ1(Ts) suggests that FtsN may interact with these gene products during cell division. The ftsN gene was located at 88.5 min on the E. coli genetic map just downstream of the cytR gene. ftsN was essential for cell division, since expression of a conditional null allele led to filamentation and cell death. DNA sequence analysis of the ftsN gene revealed an open reading frame of 319 codons which would encode a protein of 35,725 Da. The predicted gene product had a hydrophobic sequence near its amino terminus similar to the noncleavable signal sequences found in several other Fts proteins. The presumed extracellular domain was unusual in that it was rich in glutamine residues. A 36-kDa protein that was localized to the membrane fraction was detected in minicells containing plasmids with the ftsN gene, confirming that FtsN was a membrane protein.  相似文献   

19.
20.
We have tested the impact of tags on the structure and function of indirect flight muscle (IFM)-specific Act88F actin by transforming mutant Drosophila melanogaster, which do not express endogenous actin in their IFMs, with tagged Act88F constructs. Epitope tagging is often the method of choice to monitor the fate of a protein when a specific antibody is not available. Studies addressing the functional significance of the closely related actin isoforms rely almost exclusively on tagged exogenous actin, because only few antibodies exist that can discriminate between isoforms. Thereby it is widely presumed that the tag does not significantly interfere with protein function. However, in most studies the tagged actin is expressed in a background of endogenous actin and, as a rule, represents only a minor fraction of the total actin. The Act88F gene encodes the only Drosophila actin isoform exclusively expressed in the highly ordered IFM. Null mutations in this gene do not affect viability, but phenotypic effects in transformants can be directly attributed to the transgene. Transgenic flies that express Act88F with either a 6x histidine tag or an 11-residue peptide derived from vesicular stomatitis virus G protein at the C terminus were flightless. Overall, the ultrastructure of the IFM resembled that of the Act88F null mutant, and only low amounts of C-terminally tagged actins were found. In contrast, expression of N-terminally tagged Act88F at amounts comparable with that of wild-type flies yielded fairly normal-looking myofibrils and partially reconstituted flight ability in the transformants. Our findings suggest that the N terminus of actin is less sensitive to modifications than the C terminus, because it can be tagged and still polymerize into functional thin filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号