首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Droplet merging and splitting are important droplet manipulations in droplet-based microfluidics. However, the fundamental flow behaviors of droplets were not systematically studied. Hence, we designed two different microstructures to achieve droplet merging and splitting respectively, and quantitatively compared different flow dynamics in different microstructures for droplet merging and splitting via micro-particle image velocimetry (micro-PIV) experiments. Some flow phenomena of droplets different from previous studies were observed during merging and splitting using a high-speed microscope. It was also found the obtained instantaneous velocity vector fields of droplets have significant influence on the droplets merging and splitting. For droplet merging, the probability of droplets coalescence (η) in a microgroove is higher (50% < η < 92%) than that in a T-junction microchannel (15% < η < 50%), and the highest coalescence efficiency (η = 92%) comes at the two-phase flow ratio e of 0.42 in the microgroove. Moreover, compared with a cylinder obstacle, Y-junction bifurcation can split droplets more effectively and the droplet flow during splitting is steadier. The results can provide better understanding of droplet behaviors and are useful for the design and applications of droplet-based microfluidics.  相似文献   

2.
We report the droplet generation behavior of a microfluidic droplet generator with a controllable deformable membrane wall using experiments and analytical model. The confinement at the droplet generation junction is controlled by using external pressure, which acts on the membrane, to generate droplets smaller than junction size (with other parameters fixed) and stable and monodispersed droplets even at higher capillary numbers. A non-dimensional parameter, i.e., controlling parameter K p, is used to represent the membrane deformation characteristics due to the external pressure. We investigate the effect of the controlled membrane deformation (in terms of K p), viscosity ratio λ and flow rate ratio r on the droplet size and mobility. A correlation is developed to predict droplet size in the controllable deformable microchannel in terms of the controlling parameter K p, viscosity ratio λ and flow rate ratio r. Due to the deflection of the membrane wall, we demonstrate that the transition from the stable dripping regime to the unstable jetting regime is delayed to a higher capillary number Ca (as compared to rigid droplet generators), thus pushing the high throughput limit. The droplet generator also enables generation of droplets of sizes smaller than the junction size by adjusting the controlling parameter.  相似文献   

3.
The World Health Organization (WHO) in 2013 reported that more than seven million unexpected losses every year are credited to air contamination. Because of incredible adaptability and expense viability of fibrous filters, they are broadly used for removing particulates from gasses. The influence of appropriate parameters, e.g., the fiber arrangement, solid volume fraction (SVF or α), fluid flow face velocity (mean inlet velocity), and filter thickness (I x ), on pressure drop and deposition efficiency are researched. Furthermore, to study the effects of variation of the laminar flow regime and fiber’s cross-sectional shape on the deposition of particles, only a single square fiber has been placed in a channel. By means of finite volume method (FVM), the 2-D motion of 100–1000 nm particles was investigated numerically. The Lagrangian method has been employed and the Saffman’s lift, Drag, and Brownian forces have been considered to affect this motion. Contribution of increasing the Reynolds number to filtration performance increased with smaller fine aerosols to a level of 59.72 %. However, for over 500 nm, the Re = 100 has more efficient results up to 26.97 %. Remarkably, the single square fiber in Re = 200 regime performs similarly to the optimum choice of multi-fibrous filters. It was portrayed the parallel circular multi-fibrous filter with a ratio of horizontal-to-vertical distances between fibers, l/h = 1.143; α = 0.687, I x  = 116.572, and h/d f  = 1.0 is the most efficient filter’s structure. The increase in the ratio of vertical distances between fibers-to-fiber’s diameter (h/d f ) and decrease in SVF or α, results in a drastically decrement of the filtration performance of both parallel and staggered structures. The obtained results have been validated with previous research findings.  相似文献   

4.
5.
Hatem M. Bahig 《Computing》2011,91(4):335-352
An addition chain for a natural number n is a sequence \({1=a_0 < a_1 < \cdots < a_r=n}\) of numbers such that for each 0 < i ≤ r, a i  = a j  + a k for some 0 ≤ k ≤ j < i. The minimal length of an addition chain for n is denoted by ?(n). If j = i ? 1, then step i is called a star step. We show that there is a minimal length addition chain for n such that the last four steps are stars. Then we conjecture that there is a minimal length addition chain for n such that the last \({\lfloor\frac{\ell(n)}{2}\rfloor}\)-steps are stars. We verify that the conjecture is true for all numbers up to 218. An application of the result and the conjecture to generate a minimal length addition chain reduce the average CPU time by 23–29% and 38–58% respectively, and memory storage by 16–18% and 26–45% respectively for m-bit numbers with 14 ≤ m ≤ 22.  相似文献   

6.
In this work, flow friction in microchannels decorated with micropillars was investigated experimentally, with an interest to understand the wetting transition through two simple means: Poiseuille number and scaling laws. Different wetting states were demarcated by qualitatively assessing the behaviour of Poiseuille number (Po = f·Re, where f is friction factor and Re is Reynolds number), which are further corroborated by confocal microscopy-based measurements and numerical simulations. The wetting transition ensued smoothly with an increase in Re, independent of the gas fraction (a ratio of area covered by the liquid–gas interface to the total projected area), for moderate gas fractions, whereas an early breakdown of the Cassie–Baxter state occurred irrespective of Re at high gas fractions. Additionally, the scaling laws were found to correlate well with the underlying state of the flow. Our observations revealed that the liquid–gas interface exhibits a partial slip, contrary to the common notion that it is shear free. It is inferred that an increase in effective flow area leads to a reduction in flow friction in textured microchannels. The present work underlines three important outcomes. The first is the identification of wetting states in flow conditions shown by tracking the Poiseuille number. The second is that the liquid–gas interface is deduced to behave like a partial slip boundary. The third is that a textured microchannel can be worse than an enlarged dimension microchannel.  相似文献   

7.
G. Alefeld  Z. Wang 《Computing》2008,83(4):175-192
In this paper we consider the complementarity problem NCP(f) with f(x) = Mx + φ(x), where MR n×n is a real matrix and φ is a so-called tridiagonal (nonlinear) mapping. This problem occurs, for example, if certain classes of free boundary problems are discretized. We compute error bounds for approximations \({\hat x}\) to a solution x* of the discretized problems. The error bounds are improved by an iterative method and can be made arbitrarily small. The ideas are illustrated by numerical experiments.  相似文献   

8.
Electrowetting on dielectric (EWOD) is useful in manipulating droplets for digital (droplet-based) microfluidics, but its high driving voltage over several tens of volts has been a barrier to overcome. This article presents the characteristics of EWOD device with aluminum oxide (Al2O3, ε r  ≈ 10) deposited by atomic layer deposition (ALD), for the first time as the high-k dielectric for lowering the EWOD driving voltage substantially. The EWOD device of the single-plate configuration was fabricated by several steps for the control electrode array of 1 mm × 1 mm squares with 50 μm space, the dielectric layer of 1,270 Å thick ALD Al2O3, the reference electrode of 20 μm wide line electrode, and the hydrophobic surface treatment by Teflon-AF coating, respectively. We observed the movement of a 2 μl water droplet in an air environment, applying a voltage between one of the control electrodes and the reference electrode in contact with the droplet. The droplet velocity exponentially depending on the applied voltage below 15 V was obtained. The measured threshold voltage to move the droplet was as low as 3 V which is the lowest voltage reported so far in the EWOD researches. This result opens a possibility of manipulating droplets, without any surfactant or oil treatment, at only a few volts by EWOD using ALD Al2O3 as the dielectric.  相似文献   

9.
This paper proposes an orthogonal analysis method for decoupling the multiple nozzle geometrical parameters of microthrusters, thus an reconfigured design can be implemented to generate a proper thrust. In this method, the effects of various nozzle geometrical parameters, including throat width W t , half convergence angle θ in , half divergence angle θ out , exit-to-throat section ratio W e /W t and throat radius of the curvature R t /W t , on the performance of microthrusters are sorted by range analysis. Analysis results show that throat width seriously affects thrust because range value of 67.53 mN is extremely larger than the range value of other geometry parameters. For average specific impulse (ASI), the range value of exit-to-throat section ratio W e /W t and half divergence angle θ out are 4.82 s and 3.72 s, respectively. Half convergence angle with the range value of 0.39 s and throat radius with 0.32 s have less influence on ASI compared with exit-to-throat section ratio and half divergence angle. When increasing the half convergence angle from 10° to 40° and throat radius of the curvature from 3 to 9, average specific impulse initially decreases and then increases. A MEMS solid propellant thruster (MSPT) with the reconfigured geometrical parameters of nozzle is fabricated to verify the feasibility of the proposed method. The thrust of the microthruster can reach 25 mN. Power is estimated to be 0.84 W. This work provides design guideline to reasonably configure geometry parameters of microthruster.  相似文献   

10.
In this paper we present a model for the calculation of pressure drop of three-phase liquid–liquid–gas slug flow in microcapillaries of a circular cross section. Introduced models consist of terms attributing for frictional and interfacial pressure drop, incorporating the presence of a stagnant thin film at the wall of the channel. Different formulations of the interfacial pressure drop equation were employed, using expressions developed by Bretherton (J Fluid Mech 10:166–188, 1961), Warnier et al. (Microfluid Nanofluid 8:33–45, 2010) or Ratulowski and Chang (Phys Fluids A 1:1642–1655, 1989). Models were validated experimentally using oleic acid–water–nitrogen and heptane–water–nitrogen three-phase flows in round Teflon or Radel R microchannels of 254- and 508-µm nominal inner diameter, for capillary numbers Ca b between 10?4 and 4.9 × 10?1 and Reynolds numbers Re between 0.095 and 300. Best agreement between measured and calculated values of pressure drop, with relative error between ?22 and 19 % or ?20 and 16 %, is reached for Warnier’s or Ratulowski and Chang’s interfacial pressure drop equation, respectively. The results prove that three-phase slug flow pressure drop can be successfully predicted by extending existing two-phase slug flow correlations. Good agreement of Bretherton’s equation was reached only at lower Ca numbers, indicating that an extension of the interfacial pressure drop equation as performed by Warnier et al. (Microfluid Nanofluid 8:33–45, 2010) or Ratulowski and Chang (Phys Fluids A 1:1642–1655, 1989) for higher capillary numbers is necessary. Additionally it was demonstrated that pressure drop increases substantially if dry slug flow occurs or if microchannels with significant surface roughness are employed. Those influences were not accounted for in the models presented.  相似文献   

11.
Based on unitary phase shift operation on single qubit in association with Shamir’s (tn) secret sharing, a (tn) threshold quantum secret sharing scheme (or (tn)-QSS) is proposed to share both classical information and quantum states. The scheme uses decoy photons to prevent eavesdropping and employs the secret in Shamir’s scheme as the private value to guarantee the correctness of secret reconstruction. Analyses show it is resistant to typical intercept-and-resend attack, entangle-and-measure attack and participant attacks such as entanglement swapping attack. Moreover, it is easier to realize in physic and more practical in applications when compared with related ones. By the method in our scheme, new (tn)-QSS schemes can be easily constructed using other classical (tn) secret sharing.  相似文献   

12.
In negation-limited complexity, one considers circuits with a limited number of NOT gates, being motivated by the gap in our understanding of monotone versus general circuit complexity, and hoping to better understand the power of NOT gates. We give improved lower bounds for the size (the number of AND/OR/NOT) of negation-limited circuits computing Parity and for the size of negation-limited inverters. An inverter is a circuit with inputs x 1,…,x n and outputs ¬ x 1,…,¬ x n . We show that: (a) for n=2 r ?1, circuits computing Parity with r?1 NOT gates have size at least 6n?log?2(n+1)?O(1), and (b) for n=2 r ?1, inverters with r NOT gates have size at least 8n?log?2(n+1)?O(1). We derive our bounds above by considering the minimum size of a circuit with at most r NOT gates that computes Parity for sorted inputs x 1???x n . For an arbitrary r, we completely determine the minimum size. It is 2n?r?2 for odd n and 2n?r?1 for even n for ?log?2(n+1)??1≤rn/2, and it is ?3n/2??1 for rn/2. We also determine the minimum size of an inverter for sorted inputs with at most r NOT gates. It is 4n?3r for ?log?2(n+1)?≤rn. In particular, the negation-limited inverter for sorted inputs due to Fischer, which is a core component in all the known constructions of negation-limited inverters, is shown to have the minimum possible size. Our fairly simple lower bound proofs use gate elimination arguments in a somewhat novel way.  相似文献   

13.
This paper considers a conflict situation on the plane as follows. A fast evader E has to break out the encirclement of slow pursuers P j1,...,j n = {P j1,..., P jn }, n ≥ 3, with a miss distance not smaller than r ≥ 0. First, we estimate the minimum guaranteed miss distance from E to a pursuer P a , a ∈ {j 1,..., j n }, when the former moves along a given straight line. Then the obtained results are used to calculate the guaranteed estimates to a group of two pursuers P b,c = {P b , P c }, b, c ∈ {j 1,..., j n }, bc, when E maneuvers by crossing the rectilinear segment P b P c , and the state passes to the domain of the game space where E applies a strategy under which the miss distance to any of the pursuers is not decreased. In addition, we describe an approach to the games with a group of pursuers P j1,... jn , n ≥ 3, in which E seeks to break out the encirclement by passing between two pursuers P b and P c , entering the domain of the game space where E can increase the miss distance to all pursuers by straight motion. By comparing the guaranteed miss distances with r for all alternatives b, c ∈ {j 1,..., j n }, bc, and a ? {b, c}, it is possible to choose the best alternative and also to extract the histories of the game in which the designed evasion strategies guarantee a safe break out from the encirclement.  相似文献   

14.
A grid graph \(G_{\mathrm{g}}\) is a finite vertex-induced subgraph of the two-dimensional integer grid \(G^\infty \). A rectangular grid graph R(mn) is a grid graph with horizontal size m and vertical size n. A rectangular grid graph with a rectangular hole is a rectangular grid graph R(mn) such that a rectangular grid subgraph R(kl) is removed from it. The Hamiltonian path problem for general grid graphs is NP-complete. In this paper, we give necessary conditions for the existence of a Hamiltonian path between two given vertices in an odd-sized rectangular grid graph with a rectangular hole. In addition, we show that how such paths can be computed in linear time.  相似文献   

15.
With a product state of the form \({{\rho}_{\rm in} = {\rho}_{a} \otimes |0 \rangle_b {_b} \langle 0|}\) as input to a beam splitter, the output two-mode state ρ out is shown to be negative under partial transpose (NPT) whenever the photon number distribution (PND) statistics { p(n a ) } associated with the possibly mixed state ρ a of the input a-mode is antibunched or otherwise nonclassical, i.e., whenever { p(n a ) } fails to respect any one of an infinite sequence of necessary and sufficient classicality conditions. Negativity under partial transpose turns out to be a necessary and sufficient test for entanglement of ρ out which is generically non-Gaussian. The output of a PND distribution is further shown to be distillable if any one of an infinite sequence of three term classicality conditions is violated.  相似文献   

16.
Previously, we found the generating function of an accidental resemblance to the b parent examples at m counter examples [1]. In this paper, we restrict ourself to the case where b = 2 with equal success probabilities p in Bernoulli trials for all attributes of each counter example and a success probability р 2 for each attribute in an accidental similarity. If the number n of attributes tends to infinity, the success probability is defined as \(p = \sqrt {a/n} \), and m = bn counter examples are considered, then the probability of the occurrence of an accidental similarity avoiding these m counter examples tends to 1 ? e ?a ? ae ?a [1 ? e ?ba ]..  相似文献   

17.
Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of channel and its impacts on not only the shear field but also the wall-effect lift force near the wall region. In this study, particle focusing dynamics inside trapezoidal straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-lateral movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio, channel aspect ratio, and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Remarkably, an almost complete transition of major focusing from the longer side wall to the shorter side wall was found for large-sized particles of clogging ratio K ~ 0.9 (K = a/Hmin) when Re increased noticeably to ~ 650. Finally, based on our findings, a trapezoidal straight channel along with a bifurcation was designed and applied for continuous filtration of a broad range of particle size (0.3 < K < 1) exiting through the longer wall outlet with ~ 99% efficiency (Re < 100).  相似文献   

18.
This paper proposes and demonstrates a method for multi-scale, multi-depth three-dimensional (3D) lithography. In this method, 3D molds for replicating microchannels are fabricated by passing a non-focused laser beam through an optical fiber, whose tip is immersed in a droplet of photopolymer. Line width is adjustable from 1 to 980 µm using eight kinds of optical fibers with different core diameters. The height of line drawing can be controlled by adjusting the distance between the tip of the optical fiber and a substrate. The surface roughness (Ra, Rz) of a single line and plane was evaluated. The method was employed to fabricate a 3D mold of a microchannel containing tandem chambers, which was then successfully replicated in PDMS. Multi-scale, multi-depth 3D lithography can provide a simple, flexible tool for producing PDMS microfluidic devices.  相似文献   

19.
We present an experimental and in silico investigation of path selection by a single droplet inside a tertiary-junction microchannel using oil-in-water as a model system. The droplet was generated at a T-junction inside a microfluidic chip, and its flow behavior as a function of droplet size, streamline position, viscosity, and Reynolds number (Re) of the continuous phase was studied downstream at a tertiary junction having perpendicular channels of uniform square cross section and internal fluidic resistance proportional to their lengths. Numerical studies were performed using the multicomponent lattice Boltzmann method. Both the experimental and numerical results showed good agreement and suggested that at higher Re equal to 3, the flow was dominated by inertial forces resulting in the droplets choosing a path based on their center position in the flow streamline. At lower Re of 0.3, the streamline-assisted path selection became viscous force-assisted above a critical droplet size. As the Re was further reduced to 0.03, or when the viscosity of the dispersed phase was increased, the critical droplet size for transition also decreased. This multivariate approach can in future be used to engineer sorting of cells, e.g., circulating tumor cells (CTCs) allowing early-stage detection of life-threatening diseases.  相似文献   

20.
Assume that a tuple of binary strings \(\bar a\) = 〈a 1 ..., a n 〉 has negligible mutual information with another string b. Does this mean that properties of the Kolmogorov complexity of \(\bar a\) do not change significantly if we relativize them to b? This question becomes very nontrivial when we try to formalize it. In this paper we investigate this problem for a special class of properties (for properties that can be expressed by an ?-formula). In particular, we show that a random (conditional on \(\bar a\)) oracle b does not help to extract common information from the strings a i .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号