共查询到20条相似文献,搜索用时 15 毫秒
1.
V. Tandon H. El-Mounayri H. Kishawy 《International Journal of Machine Tools and Manufacture》2002,42(5)
Typically, NC programmers generate tool paths for end milling using a computer-aided process planner but manually schedule “conservative” cutting conditions. In this paper, a new evolutionary computation technique, particle swarm optimization (PSO), is proposed and implemented to efficiently and robustly optimize multiple machining parameters simultaneously for the case of milling. An artificial neural networks (ANN) predictive model for critical process parameters is used to predict the cutting forces which in turn are used by the PSO developed algorithm to optimize the cutting conditions subject to a comprehensive set of constraints. Next, the algorithm is used to optimize both feed and speed for a typical case found in industry, namely, pocket-milling. Machining time reductions of up to 35% are observed. In addition, the new technique is found to be efficient and robust. 相似文献
2.
Shiuh-Tarng Chiang Ding-I Liu An-Chen Lee Wei-Hua Chieng 《International Journal of Machine Tools and Manufacture》1995,35(4)
In this paper, we propose an architecture with two different kinds of neural networks for on-line determination of optimal cutting conditions. A back-propagation network with three inputs and four outputs is used to model the cutting process. A second network, which parallelizes the augmented Lagrange multiplier algorithm, determines the corresponding optimal cutting parameters by maximizing the material removal rate according to appropriate operating constraints. Due to its parallelism, this architecture can greatly reduce processing time and make real-time control possible. Numerical simulations and a series of experiments are conducted on end milling to confirm the feasibility of this architecture. 相似文献
3.
E. Diez Cifuentes H. Pérez García M. Guzmán Villaseñor A. Vizán Idoipe 《International Journal of Machine Tools and Manufacture》2010,50(8):709-717
Tool runout and its effects is an important area of research within modelling, simulation, and control of milling forces. Tool runout causes tool cutting edges to experience uneven forces during milling. This fact also affects tool life and deteriorates workpiece surface quality. In this article a procedure, in order to diminish the effects of tool runout, is presented. The procedure is based on chip thickness modification by means of the fast correction of the tool feed rate. Dynamic feed rate modification is provided by superposing our own design of a fast feed system driven by a piezoelectric actuator to the conventional feed drive of the CNC machine tool. Previously, a model of the dynamic behaviour of the system was developed to analyze the influence of fast feed rate modification on cutting forces. The model incorporates the piezoelectric actuator response as well as the structural dynamics of the tool and the designed Fast Feed Drive System (FFDS). Simulated and experimental results presented in this paper show the effectiveness and benefits of this new tool runout correction procedure. 相似文献
4.
This paper describes the use of induction motor current to monitor tool fracture in end milling operations. The principles of induction motors are studied in this paper to establish the relationship between the motor current and the motor torque. It is shown that the square of the stator current of induction motors is approximately proportional to the motor torque. Since the occurrence of tool fracture will cause variations in the motor torque, measurement of the stator current appears to be an indirect technique for monitoring tool fracture. A sensitivity analysis of the stator current to the occurrence of tool fracture is also reported. Finally, experimental results under varying cutting conditions have been presented to demonstrate the effectiveness of this approach for the detection of tool fracture in end milling operations. 相似文献
5.
6.
7.
End milling of die/mold steels is a highly demanding operation because of the temperatures and stresses generated on the cutting tool due to high workpiece hardness. Modeling and simulation of cutting processes have the potential for improving cutting tool designs and selecting optimum conditions, especially in advanced applications such as high-speed milling. The main objective of this study was to develop a methodology for simulating the cutting process in flat end milling operation and predicting chip flow, cutting forces, tool stresses and temperatures using finite element analysis (FEA). As an application, machining of P-20 mold steel at 30 HRC hardness using uncoated carbide tooling was investigated. Using the commercially available software DEFORM-2D™, previously developed flow stress data of the workpiece material and friction at the chip–tool contact at high deformation rates and temperatures were used. A modular representation of undeformed chip geometry was used by utilizing plane strain and axisymmetric workpiece deformation models in order to predict chip formation at the primary and secondary cutting edges of the flat end milling insert. Dry machining experiments for slot milling were conducted using single insert flat end mills with a straight cutting edge (i.e. null helix angle). Comparisons of predicted cutting forces with the measured forces showed reasonable agreement and indicate that the tool stresses and temperatures are also predicted with acceptable accuracy. The highest tool temperatures were predicted at the primary cutting edge of the flat end mill insert regardless of cutting conditions. These temperatures increase wear development at the primary cutting edge. However, the highest tool stresses were predicted at the secondary (around corner radius) cutting edge. 相似文献
8.
Hard coatings CrN, TiAlN and multilayer CrN/TiAlN were prepared on different substrates (HSS, D2 tool steels, Al-alloy) by thermoionic arc ion plating and by sputtering. The defects incorporated into the coating were studied by four techniques: top view conventional and field-emission SEM, cross-section SEM, AFM and stylus profilometry. As a specifically useful tool to study internal structure of the defect, we applied focused ion beam milling system, which is built in a conventional scanning electron microscope. By ion beam milling we prepared cross-sections through the defects. 相似文献
9.
The instantaneous uncut chip thickness and specific cutting forces have a significant effect on predictions of cutting force. This paper presents a systematic method for determining the coefficients in a three-dimensional mechanistic cutting force model—the cutting force coefficients (two specific cutting forces, chip flow angle) and runout parameters. Some existing models have taken the approach that the cutting force coefficients vary as a function of cutting conditions or cutter rotation angle. This paper, however, considers that the coefficients are affected only by the uncut chip thickness. The instantaneous uncut chip thickness is estimated by following the movement of the position of the center of a cutter. To consider the size effect, the present method derives the relationship between the re-scaled uncut chip thickness and the normal specific cutting force, Kn with respect to the cutter rotation angle, while the other two coefficients—frictional specific cutting force, Kf and chip flow angle, θc—remain constant. Subsequently, all the coefficients can be obtained, irrespective of cutting conditions. The proposed method was verified experimentally for a wide range of cutting conditions, and gave significantly better predictions of cutting forces. 相似文献
10.
In geometric adaptive control systems for the end milling process, the surface error is usually predicted from the cutting force owing to the close relationship between them, and the easiness of its measurement. Knowledge of the cutting depth improves the effectiveness of this approach, since different cutting depths result in different surface errors even if the measured cutting forces are the same. This work suggests an algorithm for estimating the cutting depth based on the pattern of cutting force. The cutting force pattern, rather than its magnitude, better reflects the change of the cutting depth, because while the magnitude is influenced by several cutting parameters, the pattern is affected mainly by the cutting depth. The proposed algorithm can be applied to extensive cutting circumstances, such as presence of tool wear, change of work material hardness, etc. 相似文献
11.
Ming Liang Tet Yeap Saeed Rahmati Zhixin Han 《International Journal of Machine Tools and Manufacture》2002,42(14)
This paper reports a fuzzy control system for power regulation in end milling processes. This control system is capable of adjusting both feedrate and spindle speed simultaneously. Experiments have been carried out using both steel and aluminum workpieces of various cutting geometries. Different tools (HSS and carbide tools of different diameters and different number of teeth) have been used for aluminum workpieces. Both full immersion slotting and partial immersion cutting were tested. Our test results show that the system was in sensitive to workpiece and tool changes and cutting power was well regulated around the target levels for various types of variations in depth of cut. Our test results also show that as compared to single parameter (feedrate) adjustment, further savings in machining time can be achieved by adjusting both feedrate and spindle speed. 相似文献
12.
In order to improve productivity in end milling operations, a new adaptive control system based on fuzzy logics to maintain a constant cutting force is developed. It is shown, by experimental cutting tests, that the cutting tool travels in the air cut with fast feed rate, yet in the varying depths of cut, the tool travels with an adjustable feed rate to prevent the occurrence of tool breakage and maintain a high metal removal rate. 相似文献
13.
Chatter suppression in micro end milling with process damping 总被引:1,自引:0,他引:1
Ramin Rahnama Mozhdeh Sajjadi Simon S. Park 《Journal of Materials Processing Technology》2009,209(17):5766-5776
Micro milling utilizes miniature micro end mills to fabricate complexly sculpted shapes at high rotational speeds. One of the challenges in micro machining is regenerative chatter, which is an unstable vibration that can cause severe tool wear and breakage, especially in the micro scale. In order to predict chatter stability, the tool tip dynamics and cutting coefficients are required. However, in micro milling, the elasto-plastic nature of micro machining operations results in large process damping in the machining process, which affects the chatter. We have used the equivalent volume interface between the tool and the workpiece to determine the process damping parameter. Furthermore, the accurate measurement of the tool tip dynamics is not possible through direct impact hammer testing. The dynamics at the tool tip is indirectly obtained by employing the receptance coupling method, and the mechanistic cutting coefficients are obtained from experimental cutting tests. Chatter stability experiments have been performed to examine the proposed chatter stability model in micro milling. 相似文献
14.
Error compensation in flexible end milling of tubular geometries 总被引:2,自引:0,他引:2
There are many machining situations where slender tools are used to machine thin walled tubular workpieces. Such instances are more common in machining of aircraft structural parts. In these cases, cutting force induced tool as well as workpiece deflections are quite common which result into surface error on machined components. This paper presents a methodology to compensate such tool and workpiece induced surface errors in machining of thin walled geometries by modifying tool paths. The accuracy with which deflections can be predicted strongly depends on correctness of the cutting force model used. Traditionally employed mechanistic cutting force models overestimate tool and workpiece deflections in this case as the change of process geometry due to deflections is not accounted in modeling. Therefore, a cutting force model accounting for change in process geometry due to static deflections of tool and workpiece is adopted in this work. Such a force model is used in predicting tool and workpiece deflection induced surface errors on machined components and then compensating the same by modifying tool path. The paper also studies effectiveness of error compensation scheme for both synclastic and anti-clastic configurations of tubular geometries. 相似文献
15.
Analysis of chatter vibration in the end milling process 总被引:2,自引:0,他引:2
An-Chen Lee Chia-Shang Liu 《International Journal of Machine Tools and Manufacture》1991,31(4):471-479
This paper continues the work of a previous paper by the authors. A different approach is applied, which adopts frequency domain analysis by linearizing the nonlinear equations to investigate the dynamic behavior in the milling process. A new relationship among the limiting axial depth of cut, workpiece fundamental natural frequency and spindle speed is constructed, and the obtained stable region is also consistent with that of the previous paper. 相似文献
16.
The productivity in High Speed Cutting is often limited by undesirable vibration effects in the main spindle (chatter). In many cases these limits are far below the technically possible cutting parameters provided by the machine technology. This paper presents a new approach to a motor-integrated milling spindle with an embedded electromagnetic actuator to actively reduce chatter vibrations and increase productivity. It is based on the non-contact application of highly-dynamic damping forces on the spindle shaft. That way the process stability can be increased significantly. By measurement and simulation-based analysis of spindle dynamics and transient and analytical approaches to process stability, the efficiency of the damping method is demonstrated in theory. Finally, a new, soft magnetic composite based motor-integrated electromagnetic actuator is introduced in this article. 相似文献
17.
Making an analysis for vibration modal and frequency response of the lathe spindle, respectively by using finite element method based on ANSYS and experiment of CA6140 type lathe in machining, and the calculation results are compared and analyzed, which verified the accuracy of ANSYS method. Numerical simulation and experimental results show that: Spindle in the first order and fifth order are prone to resonance, but did not reach resonance, the low order natural frequency have more effect than the high order natural frequency of the spindle vibration; by the experiments can conclude that the maximum vibration of the main shaft in the working state is mainly concentrated in the vicinity of its two ends, therefore, the improved bearing is an important way to reduce the vibration of the main shaft and ensure the machining accuracy, and the research results can provide a theoretical reference for the structural optimization design of the lathe. 相似文献
18.
文中研究了高功率单光束激光焊与双光束激光焊过程中匙孔动态特征的差别. 结果表明,单光束激光焊及双光束激光焊接过程中匙孔均处于从产生到湮灭的剧烈波动的过程,不同于单光束激光焊匙孔的形成、长大、维持、缩小、湮灭过程,双光束激光焊的匙孔还存在分离长大及合并缩小的过程;在相同的焊接参数及焊缝具有相同熔深的条件下,双光束激光焊匙孔的波动频率约为单光束激光焊的2/3,单光束激光焊匙孔的开口面积均值约为双光束激光焊匙孔开口面积的1/2,开口面积的波动变异系数约为单光束激光的2倍,即双光束激光焊过程中匙孔较单光束激光焊的具有较高稳定性. 相似文献
19.
Suppression of chatter vibration is required to improve the machined surface quality and enhance tool life. For monitoring the chatter vibrations, additional sensors such as acceleration sensors are generally used, which results in high costs and low reliability of the machine tools. In this study, a novel in-process method to detect chatter vibrations in end milling is developed on the basis of a disturbance observer theory. The developed system does not require any external sensors because it uses only the servo information of the spindle control system. Self-excited and forced chatter vibrations are successfully detected. 相似文献
20.
H.S. Lu C.K. Chang N.C. Hwang C.T. Chung 《Journal of Materials Processing Technology》2009,209(8):3808-3817
This paper investigates optimization design of the cutting parameters for rough cutting processes in high-speed end milling on SKD61 tool steel. The major characteristics indexes for performance selected to evaluate the processes are tool life and metal removal rate, and the corresponding cutting parameters are milling type, spindle speed, feed per tooth, radial depth of cut, and axial depth of cut. In this study, the process is intrinsically with multiple performance indexes so that grey relational analysis that uses grey relational grade as performance index is specially adopted to determine the optimal combination of cutting parameters. Moreover, the principal component analysis is applied to evaluate the weighting values corresponding to various performance characteristics so that their relative importance can be properly and objectively described. The results of confirmation experiments reveal that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of cutting parameters. Hence, this confirms that the proposed approach in this study can be an useful tool to improve the cutting performance of rough cutting processes in high-speed end milling process. 相似文献