首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
测量地板辐射与下送风复合式供冷系统运行过程中的室内空气温湿度、围护结构表面温度等室内环境参数,分析室内温湿度、热舒适性、系统换热量的变化规律,并对室内空气环境进行影响因素分析。实验结果表明:室内空气绝对湿度较室内空气温度达到稳定需要的时间更短;MRT(mean radian temperature)、OT(operation temperature)和PMV-PPD值在系统开启后第1.0 h减小速率最大,1.5 h后逐渐趋于稳定,此时,PMV约为0.49,PPD约为10%,在热舒适范围内;地板净辐射换热量、对流换热量和总换热量在系统开启后的1.5 h内递增,然后趋于稳定,此时,地板辐射换热量约为37 W/m~2,占总换热量的47%;室内空气温度和作用温度均随室外综合温度、室内发热量、供回水平均温度和送风温度的增加而增加,当室外综合温度较低或较高,或室内发热量较低,或供回水平均温度较低时,室内空气温度和作用温度变化梯度较小,室内空气温度和作用温度随送风温度增加而增加的速率近似呈线性。  相似文献   

2.
An experimental and numerical study of the transient non-periodic wall heat transfer problem is presented. A computer-controlled indoor/outdoor environment simulation system produces any desired variation of the air temperature, thus allowing measurement of the dynamic thermal behaviour of any test wall under the desired boundary conditions. Measurements of the temperature field within the wall, of the heat flow and of the convection coefficients at the wall surfaces are performed during step, ramp and cosine perturbations of the outdoor air temperature. The measurements are in very good agreement with the numerical predictions obtained by a developed finite difference solution procedure. The results showed that in building heat transfer applications, for example in air conditioning, the usual assumption of periodic outdoor conditions may lead to considerable errors in case of a significant temporary deviation of the temperature from periodicity.  相似文献   

3.
参照变电站主变压器室,建立了双侧开口热源建筑数值模型,通过改变大气透过率(sunshine fraction)的大小改变日照强度,利用FL U EN T进行求解,考察日照作用对热源建筑自然通风流动的影响。计算结果表明:日照作用影响热源建筑室内外热量传递的大小和方向,当大气透过率为0.15时,室内外两侧传递热量达到平衡。较大的日照强度导致通风量增大,室内气流速度分布更均匀,日照作用下不同高度的气流温度受到的主要影响因素不同。  相似文献   

4.
The field synergy principle has been validated to be an effective tool for enhancing convective heat transfer capability. Since convective mass transfer is analogous to convective heat transfer, the field synergy principle has been extended to convective mass transfer analyses to enhance the overall decontamination rate of indoor ventilation systems. According to the field synergy principle, the overall decontamination capability and the utilization efficiency of the air are both influenced by the synergy between the velocity vectors and the contaminant concentration gradients. Furthermore, in order to derive a method to improve the synergy based on the essence of convective mass transfer, the mass transfer potential capacity dissipation function is defined, and then the convective mass transfer field synergy equation is obtained by seeking the extremum of the mass transfer potential capacity dissipation function for a set of specified constraints. The convective mass transfer field synergy equation can be solved to find the optimized air velocity distribution to increase the field synergy and the overall decontamination capability. The optimized air velocity field provides guidance for optimizing ventilation system designs.  相似文献   

5.
This paper presents a time-dependent periodic heat transfer analysis of a non-air-conditioned building having a south-facing wall of phase-changing component material (PCCM). A rectangular room (6 × 5 × 4 m) based on the ground is considered. The effects of heat transfer through walls and roof, heat conduction to the basement ground and furnishings, heat gain through window and heat loss due to air ventilation have been incorporated in the periodic time-dependent heat transfer analysis. The time-dependent heat flux through the PCCM south-facing wall has been obtained by defining the effective thermal properties of the PCCM for a conduction process with no phase change. Numerical calculations are made for a typical mild winter day (7 March 1979) at New Delhi for heat flux entering through the wall and inside air temperature. Further, a PCCM wall of smaller thickness is more desirable, in comparison to an ordinary masonry concrete wall, for providing efficient thermal energy storage as well as excellent thermal comfort in buildings.  相似文献   

6.
This paper presents an investigation of the thermal behaviour of a non-airconditioned building with walls/roof being exposed to periodic solar radiation and atmospheric air while the inside air temperature is controlled by an isothermal mass, window and door in the walls of the room. The effects of air ventilation and infiltration, the heat capacities of the isothermal storage mass inside air and walls/roof, heat loss into the ground, and the presence/absence of the window/door have been incorporated in the realistic time dependent periodic heat transfer analysis to evaluate the overall heat flux coming into the room and the inside air temperature. A numerical computer model using typical weather data for Delhi has been made to appreciate the analytical results quantitatively. It is found that the heat fluxes through different walls have different magnitudes and phase lags w.r.t. the corresponding solair temperatures. The overall heat flux coming into the room as well as the room air temperature are sensitive functions of the number of air changes per hour, closing/opening of the window and the door ventilation. The effects of the heat capacity of the isothermal mass and the basement ground are found to reduce the inside air temperature swing and the presence of a window is found to increase the inside air temperature even when the window area is much smaller than the wall/roof area. The model presented would be an aid to a building architect for good thermal design of non-airconditioned buildings.  相似文献   

7.
We have developed an experimental ventilation system that features direct heat exchange between ventilation air and granules containing a phase change material (PCM). Measurement of outlet air temperature when the inlet air temperature was periodically varied to simulate changes of outdoor ambient air temperature showed that the outlet air temperature was stabilized and remained within the phase change temperature range. This effect is expected to be useful in practical ventilation systems. The potential of such systems for reducing ventilation load was examined through computer simulation for eight representative cities of Japan. This revealed how different temperature conditions would affect required heat storage capacity.  相似文献   

8.
Integrated control by controlling both natural ventilation and HVAC systems based on human thermal comfort requirement can result in significant energy savings. The concept of this paper differs from conventional methods of energy saving in HVAC systems by integrating the control of both these HVAC systems and the available natural ventilation that is based on the temperature difference between the indoor and the outdoor air. This difference affects the rate of change of indoor air enthalpy or indoor air potential energy storage. However, this is not efficient enough as there are other factors affecting the rate of change of indoor air enthalpy that should be considered to achieve maximum energy saving. One way of improvement can be through the use of model guide for comparison (MGFC) that uses physical-empirical hybrid modelling to predict the rate of change of indoor air potential energy storage considering building fabric and its fixture. Three methods (normal, conventional and proposed) are tested on an identical residential building model using predicted mean vote (PMV) sensor as a criterion test for thermal comfort standard. The results indicate that the proposed method achieved significant energy savings compared with the other methods while still achieving thermal comfort.  相似文献   

9.
During the hot summer season, using electricity systems increases the local anthropogenic heat emission, further increasing the temperature. Regarding anthropogenic heat sources, electric energy consumption, heat generation, indoor and outdoor heat transfer, and exchange in buildings play a critical role in the change in the urban thermal environment. Therefore, the Weather Research and Forecasting (WRF) Model was applied in this study to investigate the heat generation from an indoor electricity system and its influence on the outdoor thermal environment. Through the building effect parameterization (BEP) of a multistorey urban canopy scheme, a building energy model (BEM) to increase the influence of indoor air conditioning on the electricity consumption system was proposed. In other words, the BEP+BEM urban canopy parameterization scheme was set. High temperatures and a summer heat wave were simulated as the background weather. The results show that using the BEP+BEM parameterization scheme of indoor and outdoor energy exchange in the WRF model can better simulate the air temperature near the surface layer on a sunny summer. During the day, the turning on the air conditioning and other electrical systems have no obvious effect on the air temperature near the surface layer in the city, whereas at night, the air temperature generally increases by 0.6 ℃, especially in densely populated areas, with a maximum temperature rise of approximately 1.2 ℃ from 22:00 to 23:00. When the indoor air conditioning target temperature is adjusted to 25–27 ℃, the total energy release of the air conditioning system is reduced by 12.66%, and the temperature drops the most from 13:00 to 16:00, with an average of approximately 1 ℃. Further, the denser the building is, the greater the temperature drop.  相似文献   

10.
Di Liu  Fu-Yun Zhao  Guang-Fa Tang   《Renewable Energy》2007,32(7):1228-1242
This paper aims to prolong the heat pump frost time and reduce its growth with heat recovery facility, which should mix the exhausted indoor and outdoor air before entering the evaporator. An ideal mathematic model is developed for heat transfer, frost generation and airside pressure drop. The properties of the mixture would be obtained by solving the mass and energy conservation equations. A parametric analysis is performed to investigate the effects of air inlet temperature, relative humidity and air mass flow rate on total heat transfer coefficient, frost thickness and airside pressure drop, respectively. The results show that rationalizing the ratio of indoor and outdoor air could prolong frosting time and reduce the frost thickness greatly. The total heat transfer coefficient, frost thickness and airside pressure drop increase monotonically with time going, but are not proportional. Decreasing the mixture inlet air temperature and relative humidity could essentially reduce frost growth on the tube surfaces. This can also be observed when increasing the air mass flow rate.  相似文献   

11.
传统玻璃幕墙房间昼夜温差大、供暖能耗高,该文提出一种墙体-屋面组合式蓄热通风墙.建立该结构的传热数学模型,对屋面倾斜角度、通风孔尺寸、风机风速等影响因素进行优化分析,对比墙体-屋面组合式蓄热通风墙与传统玻璃幕墙房间的室内热环境及热负荷.结果表明:综合考虑总供热量和对流换热量,通风孔尺寸为250 mm×250 mm最佳;...  相似文献   

12.
Thermal mass and night ventilation as passive cooling design strategy   总被引:2,自引:0,他引:2  
We calculated the influence of thermal mass and night ventilation on the maximum indoor temperature in summer. The results for different locations in the hot humid climate of Israel are presented and analyzed. The maximum indoor temperature depends linearly on the temperature difference between day and night at the site. The fit can be applied as a tool to predict from the temperature swing of the location the maximum indoor temperature decrease due to the thermal mass and night ventilation. Consequently, the fit can be implemented as a simple design tool to present the reduction in indoor temperature due to the amount of the thermal mass and the rate of night ventilation, without using an hourly simulation model. Moreover, this design tool is able to provide for the designer in the early design stages the conditions when night ventilation and thermal mass are effective as passive cooling design strategy.  相似文献   

13.
Himanshu Dehra 《Solar Energy》2009,83(11):1933-1942
A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montréal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system.  相似文献   

14.
This communication presents the periodic heat transfer analysis for solar space heating of an unconditioned building with an integrated roof air heater. The system consists of an air duct within the roof such that the air is continuously or intermittently forced to circulate the cooler room air through the inlet of the air duct. Time dependence of the air flow is represented by a step function of time for daily operation and, hence, has been expressed as a Fourier series in time. The analysis takes into account air ventilation, ground heat conduction and furnishings. The effects of depth of the air duct from the outer surface of the roof and the magnitude and duration of air flow rate on indoor air temperature have been studied for a typical cold winter day in Delhi. It is seen that a time dependent air flow through the duct is desirable from the point of view of increasing the indoor air temperature in the case of a bare roof. However, in the case of a blackened and glazed roof, continuous air flow is needed for increasing the room air temperature. The results are desirable from the point of view of efficient space heating of solar passive buildings.  相似文献   

15.
建立日光温室计算传热模型,以室内空气温度和墙体内表面温度为指标,通过实验方法验证了所建立的传热模型准确性,最后分析相变材料相变温度、相变焓、导热系数、密度等热物性对室内最低温度和相变蓄热率的影响规律,确定被动式相变蓄热墙体和主-被动式相变蓄热墙体的最佳相变材料热物性,阐明了实际应用时相变材料选择原则。研究结果表明,所建立的日光温室传热模型具有较高准确性,可用于日光温室墙体相变材料热物性优化;主-被动式相变蓄热墙体最佳相变材料的相变温度为27 ℃,相变焓为200 kJ/kg,导热系数为0.35 W/(m·K),密度为440 kg/m3,被动式相变蓄热墙体最佳相变材料的相变温度为26 ℃,相变焓为200 kJ/kg,导热系数为0.35 W/(m·K),密度为792 kg/m3;最佳相变材料热物性应用时,2种墙体室内最低温度均可达到15.0 ℃,但是被动式相变蓄热墙体的相变蓄热率较主-被动式相变蓄热墙体减小29.5%。本研究可为相变材料在日光温室的高效利用提供参考。  相似文献   

16.
The radiant floor cooling system can be used as an alternative to all-air cooling systems, using the existing Ondol system (a radiant floor heating system) in Korea to save energy and maintain indoor thermal comfort. Unfortunately, a radiant floor cooling system may cause condensation on the floor surface under hot and humid conditions during the cooling season. In addition, the radiant floor system does not respond quickly to internal load changes due to the thermal storage effect of the concrete mass, which is usually present in radiant floor cooling systems.This study proposes a radiant floor cooling system integrated with dehumidified ventilation, which cools and dehumidifies the outdoor air entering through the cooling coil in the ventilator by lowering the dew-point temperature to prevent condensation on the floor surface. Furthermore, outdoor reset control was used to modulate the temperature of chilled water supplied to the radiant floor, and indoor temperature feedback control was then used to respond to the internal load changes.To evaluate the performance of the radiant floor cooling system integrated with dehumidified ventilation, both a physical experiment in a laboratory setting and TRNSYS simulation for an apartment in Korea have been conducted. As a result, it was found that the proposed system was not only able to solve the problem of condensation on a floor surface but also to control the indoor thermal environment within the acceptable range of comfort. Furthermore, the proposed system improved the responsiveness to internal load changes.  相似文献   

17.
In this study a low-energy-consumption technique to enhance passive cooling and natural ventilation in a solar house, using a system consisting of a Solar Chimney (SC) and an Evaporative Cooling Cavity (ECC) has been proposed. The capability of the system to meet the required thermal needs of individuals and the effects of main geometric parameters on the system performance has been studied. The dependence of the system performance on outdoor air temperature has been studied to determine the operative conditions for appropriate effectiveness, regarding thermal comfort criteria. To determine the heat and mass transfer characteristics of the system, a mathematical model based on conservation equations of mass and energy has been developed and solved by an iterative method. The findings show that the system is capable of providing good indoor air condition at daytime in a living room, even with poor solar intensity of 200 W/m2. The results show that when the relative humidity is lower than 50%, the system can make good indoor air condition even at 40 °C, and a higher performance is achieved using ECC with cocurrent configuration. It is found that the proposed system may be applied successfully in hot arid climates to fulfill the indoor thermal comfort expectations.  相似文献   

18.
自然通风房间热环境的耦合模拟计算方法   总被引:5,自引:0,他引:5  
分析了自然通风房间的自然通风量和室内空气温度的相互影响作用关系,采用宏观计算模型,建立了自然通风系统和建筑热过程系统的耦合影响作用模型,通过计算结果和实测值的对比,证明该模型提供了一种可以较为准确地模拟自然通风房间热环境的方法。  相似文献   

19.
Lightweight envelopes are widely used in modern buildings but they lack sufficient thermal capacity for passive solar utilization. An attractive solution to increase the building thermal capacity is to incorporate phase change material (PCM) into the building envelope. In this paper, a simplified theoretical model is established to optimize an interior PCM for energy storage in a lightweight passive solar room. Analytical equations are presented to calculate the optimal phase change temperature and the total amount of latent heat capacity and to estimate the benefit of the interior PCM for energy storage. Further, as an example, the analytical optimization is applied to the interior PCM panels in a direct-gain room with realistic outdoor climatic conditions of Beijing. The analytical results agree well with the numerical results. The analytical results show that: (1) the optimal phase change temperature depends on the average indoor air temperature and the radiation absorbed by the PCM panels; (2) the interior PCM has little effect on average indoor air temperature; and (3) the amplitude of the indoor air temperature fluctuation depends on the product of surface heat transfer coefficient hin and area A of the PCM panels in a lightweight passive solar room.  相似文献   

20.
A prototype microcomputer-controlled thermostat was developed that can manage airflow according to cooling the needs in a building and the resources in the environment. This intelligent control system measures both indoor and outdoor temperature and uses decision rules to control a whole-house fan, in addition to the furnace and air conditioner. No such residential thermostat is currently commercially available. This paper presents the controller strategy that optimizes cooling with outdoor air. This paper also quantifies the effects of modifying the amount of thermal mass and the window area on indoor comfort when using this controller. These test confirm that smaller windows and more mass performed better than larger windows and less mass, and that higher volumes of controlled ventilation outperformed fixed ventilation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号