首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
p-Type antimony telluride (Sb2Te3) thermoelectric thin films were deposited on BK7 glass substrates by ion beam sputter deposition using a fan-shaped binary composite target. The deposition temperature was varied from 100°C to 300°C in increments of 50°C. The influence of the deposition temperature on the microstructure, surface morphology, and thermoelectric properties of the thin films was systematically investigated. x-Ray diffraction results show that various alloy composition phases of the Sb2Te3 materials are grown when the deposition temperature is lower than 200°C. Preferred c-axis orientation of the Sb2Te3 thin film became obvious when the deposition temperature was above 200°C, and thin film with single-phase Sb2Te3 was obtained when the deposition temperature was 250°C. Scanning electron microscopy reveals that the average grain size of the films increases with increasing deposition temperature and that the thin film deposited at 250°C shows rhombohedral shape corresponding to the original Sb2Te3 structure. The room-temperature Seebeck coefficient and electrical conductivity range from 101 μV K?1 to 161 μV K?1 and 0.81 × 103 S cm?1 to 3.91 × 103 S cm?1, respectively, as the deposition temperature is increased from 100°C to 300°C. An optimal power factor of 6.12 × 10?3 W m?1 K?2 is obtained for deposition temperature of 250°C. The thermoelectric properties of Sb2Te3 thin films have been found to be strongly enhanced when prepared using the fan-shaped binary composite target method with an appropriate substrate temperature.  相似文献   

2.
The present study focused on synthesis of Bi0.5Sb1.5Te3 thermoelectric powder using an oxide-reduction process. The phase structure and particle size of the synthesized powders were analyzed using x-ray diffractometry and scanning electron microscopy. The synthesized powder was sintered using the spark plasma sintering method. The thermoelectric properties of the sintered body were evaluated by measuring the Seebeck coefficient, electrical resistivity, and thermal conductivity. Bi0.5Sb1.5Te3 powder was synthesized using a combination of mechanical milling, calcination, and reduction processes, using a mixture of Bi2O3, Sb2O3, and TeO2 powders. The sintered body of the oxide-reduction-synthesized Bi0.5Sb1.5Te3 powder showed p-type thermoelectric characteristics. The thermoelectric properties of the sintered bodies depended on the reduction time. After being reduced for 2 h at 663 K, the sintered body of the Bi0.5Sb1.5Te3 powder showed a figure of merit of approximately 1.0 at room temperature.  相似文献   

3.
To investigate the effects of segmentation of thermoelectric materials on performance levels, n-type segmented Bi2Te3/PbSe0.5Te0.5 thermoelectric material was fabricated, and its output power was measured and compared with those of Bi2Te3 and PbSe0.5Te0.5. The two materials were bonded by diffusion bonding with a diffusion layer that was ~18 μm thick. The electrical conductivity, Seebeck coefficient, and power factor of the segmented Bi2Te3/PbSe0.5Te0.5 sample were close to the average of the values for Bi2Te3 and PbSe0.5Te0.5. The output power of Bi2Te3 was higher than those of PbSe0.5Te0.5 and the segmented sample for small ΔT (300 K to 400 K and 300 K to 500 K), but that of the segmented sample was higher than those of Bi2Te3 and PbSe0.5Te0.5 when ΔT exceeded 300 K (300 K to 600 K and 300 K to 700 K). The output power of the segmented sample was about 15% and 73% higher than those of the Bi2Te3 and PbSe0.5Te0.5 samples, respectively, when ΔT was 400 K (300 K to 700 K). The efficiency of thermoelectric materials for large temperature differences can be enhanced by segmenting materials with high performance in different temperature ranges.  相似文献   

4.
Ball milling with subsequent spark plasma sintering (SPS) was used to fabricate bulk nanothermoelectrics based on Bi x Sb2?x Te3. The SPS technique enables reduced size of grains in comparison with the hot-pressing method. The electrical and thermal conductivities, Seebeck coefficient, and thermoelectric figure of merit as functions of temperature and alloy composition were measured for different sintering temperatures. The greatest value of the figure of merit ZT = 1.25 was reached at the temperature of 90°C to 100°C in Bi0.4Sb1.6Te3 for sintering temperature of 450°C to 500°C. The volume and quantitative distributions of size of coherent dispersion areas (CDA) were calculated for different sintering temperatures. The phonon thermal conductivity of nanostructured Bi x Sb2?x Te3 was investigated theoretically taking into account phonon scattering on grain boundaries and nanoprecipitates.  相似文献   

5.
Introducing nanoinclusions in thermoelectric (TE) materials is expected to lower the lattice thermal conductivity by intensifying the phonon scattering effect, thus enhancing their TE figure of merit ZT. We report a novel method of fabricating Bi0.5Sb1.5Te3 nanocomposite with nanoscale metal particles by using metal acetate precursor, which is low cost and facile to scale up for mass production. Ag and Cu particles of ??40?nm were successfully near-monodispersed at grain boundaries of Bi0.5Sb1.5Te3 matrix. The well-dispersed metal nanoparticles reduce the lattice thermal conductivity extensively, while enhancing the power factor. Consequently, ZT was enhanced by more than 25% near room temperature and by more than 300% at 520?K compared with a Bi0.5Sb1.5Te3 reference sample. The peak ZT of 1.35 was achieved at 400?K for 0.1?wt.% Cu-decorated Bi0.5Sb1.5Te3.  相似文献   

6.
7.
Thermoelectric thin films of the ternary compounds (Bi x Sb1?x )2Te3 and Bi2(Te1?y Se y )3 were synthesized using potentiostatic electrochemical deposition on gold-coated silicon substrates from aqueous acidic solutions at room temperature. The surface morphology, elemental composition, and crystal structure of the deposited films were studied and correlated with preparation conditions. The thermoelectric properties of (Bi x Sb1?x )2Te3 and Bi2(Te1?y Se y )3 films, i.e., Seebeck coefficient and electrical resistivity, were measured after transferring the films to a nonconductive epoxy support. (Bi x Sb1?x )2Te3 thin films showed p-type semiconductivity, and the highest power factor was obtained for film deposited at a relatively large negative potential with composition close to Bi0.5Sb1.5Te3. In addition, Bi2(Te1?y Se y )3 thin films showed n-type semiconductivity, and the highest power factor was obtained for film deposited at a relatively small negative potential, having composition close to Bi2Te2.7Se0.3. In contrast to Bi2Te2.7Se0.3 thin films, an annealing treatment was required for Bi0.5Sb1.5Te3 thin films to achieve the same magnitude of power factor as Bi2Te2.7Se0.3. Therefore, Bi2Te2.7Se0.3 thin films appear to be good candidates for multilayer preparation using electrochemical deposition, but the morphology of the films must be further improved.  相似文献   

8.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

9.
A thermoelectric joint composed of p-type Bi0.5Sb1.5Te3 (BiSbTe) material and an antimony (Sb) interlayer was fabricated by spark plasma sintering. The reliability of the thermoelectric joints was investigated using electron probe microanalysis for samples with different accelerated isothermal aging time. After aging for 30 days at 300°C in vacuum, the thickness of the diffusion layer at the BiSbTe/Sb interface was about 30 μm, and Sb2Te3 was identified to be the major interfacial compound by element analysis. The contact resistivity was 3 × 10?6 ohm cm2 before aging and increased to 8.5 × 10?6 ohm cm2 after aging for 30 days at 300°C, an increase associated with the thickness of the interfacial compound. This contact resistivity is very small compared with that of samples with solder alloys as the interlayer. In addition, we have also investigated the interface behavior of Sb layers integrated with n-type Bi2Se0.3Te2.7 (BiSeTe) material, and obtained similar results as for the p-type semiconductor. The present study suggests that Sb may be useful as a new interlayer material for bismuth telluride-based power generation devices.  相似文献   

10.
Open die pressing (ODP) at 370°C to 420°C has been employed as a straightforward forming process for sintering and texturing p-type (Bi0.2Sb0.8)2Te3 nanopowders. x-Ray diffraction pattern analysis showed that ODP samples were strongly textured, with the basal (00l) planes of the hexagonal crystal cell oriented parallel to the pressing plates. The degree of texturing, evaluated as the orientation factor, f, by the Lotgering method, increased with decreasing final thickness of the samples. It was about f = 45% for 10-mm-thick samples and reached 70% for 2-mm-thick samples. Thermoelectric properties of ODP specimens were measured by the Harman method in the range from 20°C to 170°C. The dimensionless figure of merit, ZT, for 10-mm-thick samples was around 1 from room temperature up to 100°C.  相似文献   

11.
Bismuth telluride-based compounds have been extensively utilized for commercial application. However, thermoelectric materials must suffer numerous mechanical vibrations and thermal stresses while in service, making it equally important to discuss the mechanical properties, especially at high temperature. In this study, the compressive and bending strengths of Bi0.5Sb1.5Te3 commercial zone melting (ZM) ingots were investigated at 25, 100, and 200 °C, respectively. Due to the obvious anisotropy of materials prepared by ZM method, the effect of anisotropy on the strengths was also explored. Two-parameter Weibull distribution was employed to fit a series of values acquired by a universal testing machine. And digital speckle photography was applied to record the strain field evolution, providing visual observation of surface strain. The compressive and bending strengths along ZM direction were approximately three times as large as those perpendicular to the ZM direction independent of the temperature, indicating a weak van der Waals bond along the c axis.  相似文献   

12.
p-Type Bi0.45Sb1.55Te3 thermoelectric (TE) thin films have been prepared at room temperature by a magnetron cosputtering process. The effect of postannealing on the microstructure and TE properties of Bi0.45Sb1.55Te3 films has been investigated in the temperature range from room temperature to 350°C. x-Ray diffraction analysis shows that the annealed films have polycrystalline rhombohedral crystal structure, and the average grain size increases from 36?nm to 64?nm with increasing annealing temperature from room temperature to 350°C. Electron probe microanalysis shows that annealing above 250°C can cause Te reevaporation, which induces porous thin films and dramatically affects electrical transport properties of the thin films. TE properties of the films have been investigated at room temperature. The hole concentration shows a trend from descent to ascent and has a minimum value at the annealing temperature of 200°C, while the Seebeck coefficient shows an opposite trend and a maximum value of 245?μV?K?1. The electrical resistivity monotonically decreases from 19.8?mΩ?cm to 1.4?mΩ?cm with increasing annealing temperature. Correspondingly, a maximum value of power factor, 27.4?μW?K?2?cm?1, was obtained at the annealing temperature of 250°C.  相似文献   

13.
The thermoelectric properties of I-doped Bi2Te3 films grown by metal-organic chemical vapor deposition have been studied. I-doped epitaxial (00l) Bi2Te3 films were successfully grown on 4° tilted GaAs (001) substrates at 360 °C. I concentration in the Bi2Te3 films was easily controlled by the variation in a flow rate of H2 carrier gas for the delivery of an isopropyliodide precursor. As I ions in the as-grown Bi2Te3 films were not fully activated, they did not influence the carrier concentration and thermoelectric properties. However, a post-annealing process at 400 °C activated I ions as a donor, accompanied with an increase in the carrier concentration. Interestingly, the I-doped Bi2Te3 films after the post-annealing process also exhibited enhancement of the Seebeck coefficient at the same electron concentration compared to un-doped Bi2Te3 films. Through doping I ions into Bi2Te3, the thermopower was also enhanced in Bi2Te3, and a high power factor of 5 × 10?3 W K?2 m?1 was achieved.  相似文献   

14.
The p-type Bi0.4Sb1.6Te3 alloys are prepared using a new method of mechanical alloying followed by microwave-activated hot pressing (MAHP). The effect of sintering temperature on the microstructure and thermoelectric properties of Bi0.4Sb1.6Te3 alloys is investigated. Compared with other sintering techniques, the MAHP process can be used to produce relatively compact bulk materials at lower sintering temperatures owing to its unique sintering mechanism. The grain size of the MAHP specimens increases gradually with the sintering temperature and a partially oriented lamellar structure can be formed in some regions of specimens obtained. The formation of the in situ-generated nano-phase is induced by the arcing effect of the MAHP process, which enhances the phonon scattering effect and decreases the lattice thermal conductivity. A minimum lattice thermal conductivity of 0.41 W/(m·K) and a maximum figure of merit value of 1.04 are obtained at 100°C for the MAHP specimen sintered at 325°C. This technique may also be extended to other functional materials to obtain ultrafine microstructures at low sintering temperatures.  相似文献   

15.
In the current study, novel hexagonal rods based on Bi0.4Sb1.6Te3 ingots dispersed with x amount of Se (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) in the form Bi0.4Sb1.6Se3x Te3(1?x) were synthesized via a standard solid-state microwave route. The morphologies of these rods were explored using field-emission scanning electron microscopy (FESEM). The crystal structure of the powders was examined by x-ray diffraction (XRD) analysis, which showed that powders of the 0.0 ≤ x ≤ 0.8 samples could be indexed to the rhombohedral phase, whereas the sample with x = 1.0 had an orthorhombic phase structure. The influence of variations in the Se content on the thermoelectric properties was studied in the temperature range from 300 K to 523 K. Alloying of Se into Bi0.4Sb1.6Te3 effectively caused a decrease in the hole concentration and, thus, a decrease in the electrical conductivity and an increase in the Seebeck coefficient. The maximal power factor measured in the present work was 7.47 mW/mK2 at 373 K for the x = 0.8 sample.  相似文献   

16.
Dielectric nanoflakes of Sb2Te3 represent an important advance in science and technology due to their extraordinary properties. Polycrystalline layered Sb2Te3 nanoflakes have been successfully synthesized via a high-throughput chemical route at 60°C. The frequency and temperature dependence of the dielectric constant and dielectric loss of the layered Sb2Te3 nanoflakes have been measured in the frequency range from 30 Hz to 758,000 Hz and temperature range from 313 K to 373 K. As-synthesized Sb2Te3 nanoflakes are shown to be promising alternative dielectrics because of their high dielectric constant (ε′ ≈ 7.3 to 6022) and low dielectric loss (tan δ ≈ 0.2 to 9.2). These higher values of ε′ and lower values of tan δ of Sb2Te3 nanoflakes confirm that capacitors with capacity (C) of ~5.2 pF to 4336 pF may be fabricated for storing renewable energy. Raman spectroscopy confirms that the peak located at ~142 cm?1 corresponds to one in-plane vibrational mode (E g 2 ) of layered Te–Sb–Te–Sb–Te lattice vibration.  相似文献   

17.
This work focused on the preparation of p-type Bi0.4Sb1.6Te3 bulk materials by combining mechanical alloying (MA) and hot extrusion, with emphasis on grain refinement and preferred grain orientation. Pure Bi, Sb, and Te powders were mechanically alloyed then hot extruded in the temperature range 360–450°C. Bi0.4Sb1.6Te3 bulk materials were successfully prepared by MA and hot extrusion. All the samples had sound appearance, with single phases and high densities. The hot-extruded samples had small grain sizes, and the lower the extrusion temperature, the smaller the grain sizes. The results indicated that the extrudates had preferred orientation. The basal plane was predominantly oriented parallel to the direction of extrusion. Similar Seebeck coefficients were obtained when extrusion temperature was in the range 380–420°C. Electrical resistivity decreased with increasing extrusion temperature. Thermal conductivity was relatively low, even if the extrusion temperature was 450°C. As a result, a ZT value of 1.2 was obtained at room temperature for the sample extruded at 400°C. Therefore, combination of MA and hot extrusion results in significant improvement of both the thermoelectric and mechanical performance of Bi0.4Sb1.6Te3 bulk materials.  相似文献   

18.
The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250°C. Sb2Te3 films revealed low charge carrier density of 2.6?×?1019?cm?3, large thermopower of 130???V?K?1, and large charge carrier mobility of 402?cm2?V?1?s?1. Bi2(Te0.91Se0.09)3 and (Bi0.26Sb0.74)2Te3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50?nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. Ab?initio calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit ZT for Bi2Te3 nanomaterials are discussed.  相似文献   

19.
We report fabrication of nanostructured Bi2?x Sb x Te3 using hydrothermal method followed by cold-pressing and evacuated-and-encapsulated sintering techniques. To obtain lower resistivity, the reaction temperature in the hydrothermal synthesis is investigated, and the effects on the ZT values of Bi2?x Sb x Te3 are reported. Both the x = 1.52 and 1.55 samples hydrothermally synthesized at 160°C show lower resistivity than the x = 1.55 sample hydrothermally synthesized at 140°C. However, the power factor is lower for the samples synthesized at 160°C due to the accompanying smaller thermopower. All three samples exhibit remarkably low thermal conductivity of around 0.41 W m?1 K?1 at room temperature. The peak ZT value occurs at 270 K for all three samples, being ZT = 1.75, 1.29, and 1.17 for x = 1.55 (synthesized at 140°C), 1.55 (synthesized at 160°C), and 1.52 (synthesized at 160°C), respectively.  相似文献   

20.
The effects of copper particles dispersed into Bi1.9Sb0.1Te2.85Se0.15 nanopowders and sintered by open die pressing (ODP) have been investigated. Submicrometric copper particles were obtained by decomposing copper acetate molecules dispersed into chalcogenides nanopowders. The acetate powders were decomposed during the sintering process at 390 °C obtaining a fine dispersion of copper particles with dimensions in the order of 500 nm. Contents up to 0.2 wt.% of copper were investigated. ODP, previously introduced as a forming process for sintering and texturing p-type (Bi0.2Sb0.8)2Te3 nanopowders, has been applied to n-type chalcogenide: the mixed alloy nanopowders and copper acetate were compacted inside a metallic protective shell and fast pressed between two heated plates, keeping the composite under load for sintering. ODP processing ensures complete consolidation of nanopowders and material texturing with the basal (00l) planes of the hexagonal crystal cell oriented parallel to the plates. The X-ray diffraction pattern shows an orientation factor, f, obtained by the Lotgering method, up to 64 %. Thermoelectric performance of the samples was measured by the Harman method in the range of 20–170 °C. Figure of merit (ZT) behavior with temperature was improved in copper-dispersed samples showing a shift of the maximum value at higher temperatures. This effect can be mainly associated with an improvement of electrical conductivity, due to the presence of the copper particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号