首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A superabsorbent of starch, 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS), and sodium acrylate was synthesized by microwave irradiation, and the effect of AMPS on the performance of the polymer was investigated. The best mass fraction of the three components was determined (starch/acrylic acid/AMPS = 2 : 5 : 3). The structure of the polymer was characterized by Fourier transform infrared, 13C cross‐polarization/magic‐angle spinning NMR, and scanning electron microscopy, and the morphology of the surface of the sample was studied. The results showed that the morphology of the polymer was changed to some extent under microwave irradiation, and the swelling rate of the polymer synthesized by microwave polymerization was faster than the swelling rate of a polymer synthesized by a traditional method. The best absorbent capacities of the product in distilled water and a 0.9% sodium chloride solution were 450 and 53 g/g, respectively. Meanwhile, the introduction of AMPS to a superabsorbent resin was an effective method for improving the performance of the polymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1050–1054, 2005  相似文献   

2.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Steady-state and time-resolved photoluminescence (TRPL) measurements are used in order to investigate the emission properties of new graft copolymer involving poly(N-vinylcarbazole) (PVK) and poly(3-methylthiophene) (PMeT) named PVK-3MeT. The photo-generated species in PVK-3MeT are identified as singlet intrachain excitons. Furthermore, radiative and nonradiative lifetimes have been calculated. The observed changes in the photo-physical properties of the different condensed phases could be directly related to the nanostructure of the material. The use of PVK in the chemical synthesis allows the obtaining of a new organic material with better emission and slowly radiative recombination compared to those of polythiophenes indicating that the radiative channel is more enhanced. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Block copolymerization of plural types of monomers offers a new opportunity for the preparation of a variety of multifunctional polymers. Poly(4‐diphenylaminostyrene) (PDAS)‐poly(9‐vinylanthracene) (PVAN) binary block copolymer (PDAS‐PVAN) was synthesized by (living) anionic polymerization using the benzyllithium/N,N,N′,N′‐tetramethylethylenediamine system. The photoluminescence emission of PDAS‐PVAN was enhanced by the fluorescence resonance energy transfer from PDAS block to PVAN block in PDAS‐PVAN. The hole drift mobility of the copolymer was controllable by the amount of triphenylamino groups in the polymer chain. The optical and electrical properties of PDAS‐PVAN were adjustable through the polymer chain structure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Poly(3‐methylthiophene) (P3‐MeT) doped with different anions were prepared electrochemically in the presence of tetraalkylammonium salts. The new poly(3‐methylthiophene) SnCl and SbCl (P3‐MeT SnCl5 and P3‐MeT SbCl6) were prepared electrochemically using tetra‐n‐butylammonium pentachlorostannate and tetra‐n‐butylammonium hexachloroantimonate as the supporting electrolytes. The effect of current density, salt concentration, reaction temperature, and the nature of solvents on the polymer yield and polymer conductivities have been investigated. Cyclic voltammetry of poly(3‐methylthiophene) has been examined at platinum electrode in 1,2‐dichloroethane medium containing n‐Bu4NSnCl5, Bu4NSbCl6, and Bu4NClO4 as the supporting electrolytes in the range of −1.0 to 1.7 V versus SCE in the presence and absence of 3‐methylthiophene. Electrical conductivity, magnetic susceptibility measurements, and structural determination by elemental analysis and infrared studies were also made. Scanning electron microscopy revealed a globular, branched, fibrous and a spongy, fibrous morphology of poly(3‐methylthiophene) SnCl, ClO, and SbCl, respectively. The thermal analysis of the polymers was also investigated. Possible causes for the observed lower conductivity of these polymers have also been discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 91–102, 1999  相似文献   

6.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. Based on these graft copolymers, electrospun fiber mats and commonly cast films were explored as drug delivery vehicles using tetracycline hydrochloride as a model drug. Toward that end, the fibers were electrospun and the films were cast from chloroform solutions containing a small amount of methanol to solubilize the drug. The Brookfield viscosities of the solution were determined to achieve the optimal electrospinning conditions. The vitro release of the tetracycline hydrochloride from these new drug delivery systems was followed by UV–vis spectroscopy. To probe into the factors affected on the release behavior of these drug delivery systems, their water absorbing abilities in phosphate buffer solution were investigated, together with their surface hydrophilicity, porosity and crystallization properties were characterized by water contact angles, capillary flow porometer, DSC, and WAXD, respectively. The morphological changes of these drug delivery vehicles before and after release were also observed with SEM. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
A two‐step procedure was used to synthesize the cellulose acetate butyrate and poly(ethylene glycol) graft copolymer (CAB‐g‐PEG). By choosing the appropriate composition, the crosslinked graft copolymer or not could be obtained. Then, the CAB‐g‐PEG copolymer was blended with poly(3‐hydroxybutyrate) (PHB), to further improve the mechanical properties of PHB. The results indicated that PHB and CAB‐g‐PEG that were not crosslinked were miscible over the entire composition range. As the CAB‐g‐PEG copolymer increased in the PHB/CAB‐g‐PEG blends, the melting temperature of the blends decreased, the crystallization of PHB became more difficult, and the crystallinity of the blend and PHB phase all decreased. The tensile properties and impact strength of the PHB/CAB‐g‐PEG blends were superior to the PHB/CAB blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1471–1478, 2006  相似文献   

8.
Stimuli‐responsive biocompatible and biodegradable materials can be obtained by combining polysaccharides with polymers exhibiting lower critical solution temperature (LCST) phase behavior, such as poly(N‐isopropylacrylamide) (PNIPAAm). The behavior of aqueous solutions of sodium alginate (NaAl) grafted with PNIPAAm (NaAl‐g‐PNIPAAm) copolymers as a function of composition and temperature is presented. The products obtained exhibit a remarkable thermothickening behavior in aqueous solutions if the degree of grafting, the concentration, and the temperature are higher than some critical values. The sol–gel‐phase transition temperatures have been determined. It was found that at temperatures below LCST the systems behave like a solution, whereas at temperatures above LCST, the solutions behave like a stiff gel, because of PNIPAAm segregation. This behavior is reversible and could find applications in tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
A novel diblock copolymer based on poly(N‐vinylcarbazole) PVK and poly(p‐phenylenevinylene) (PPV) precursor was synthesized by oxidative cross‐linking. The grafting of PPV with PVK moieties was elucidated by infrared absorption analysis. A structural study by X‐ray diffraction and a morphological study of the copolymer by scanning and transmission electron microscopy reveal a multiscale one‐dimensional self‐organization both at the molecular and at the sub‐micrometric level. The resulting copolymer exhibits original optical properties compared to those of PVK and PPV ones and presents an improved thermal behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2839–2847, 2013  相似文献   

10.
The physical properties of poly(vinyl chloride) (PVC) and poly(N‐isopropylacrylamide) [poly(NIPAAm)] blend systems, and their corresponding graft copolymers such as PVC‐g‐NIPAAm, were investigated in this work. The compatible range for PVC–poly(NIPAAm) blend systems is less than 15 wt % poly(NIPAAm). The water absorbencies for the grafted films increase with increase in graft percentage. The water absorbencies for the blend systems increase with increase in poly(NIPAAm) content within the compatible range for the blends, but the absorbencies decrease when the amount of poly(NIPAAm) is more than the compatible range in the blend system. The tensile strengths for the graft copolymers are larger than the corresponding blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 170–178, 2000  相似文献   

11.
The synthesis of a thermoresponsive graft copolymer consisting of a maleic acid/vinyl acetate alternating copolymer backbone (MAc‐alt‐VA) and poly(N‐isopropylacrylamide) (PNIPAM) side chains is reported. Turbidimetric measurements in dilute aqueous solutions showed that no macroscopic phase separation takes place when the temperature is raised above the lower critical solution temperature (LCST) of PNIPAM, even at pH = 2. Moreover, in semi‐dilute aqueous solutions, a pronounced thermally induced viscosity increase (thermothickening) was observed. This thermoresponsive behaviour has been attributed to the interconnection of the hydrophilic MAc‐alt‐VA graft copolymer backbones by means of the hydrophobic PNIPAM side chain aggregates formed as the temperature increases above the LCST of this polymer. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
A novel, asymmetric diamine, 3‐(4‐aminophenylthio)‐N‐aminophthalimide, was prepared from 3‐chloro‐N‐aminophthalimide and 4‐aminobenzenethiol. The structure of the diamine was determined via IR and 1H‐NMR spectroscopy and elemental analysis. A series of polyimides were synthesized from 3‐(4‐aminophenylthio)‐N‐aminophthalimide and aromatic dianhydrides by a conventional two‐step method in N,N‐dimethylacetamide and by a one‐step method in phenols. These polyimides showed good solubility in 1‐methyl‐2‐pyrrolidinone, m‐cresol, and p‐chlorophenol, except polyimide from pyromellitic dianhydride, which was only soluble in p‐chlorophenol. The 5% weight loss temperatures of these polyimides ranged from 460 to 498°C in air. Dynamic mechanical thermal analysis indicated that the glass‐transition temperatures of the polyimides were in the range 278–395°C. The tensile strengths at break, moduli, and elongations of these polyimides were 146–178 MPa, 1.95–2.58 GPa, and 9.1–13.3%, respectively. Compared with corresponding polyimides from 4,4′‐diamiodiphenyl ether, these polymers showed enhanced solubility and higher glass‐transition temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Graft reaction of acrylamide (AM) and 4‐vinyl pyridine (4‐VP) onto ultra‐low molecular weight poly(vinyl alcohol) by ceric (IV) ion initiation had been systematically investigated; and the graft conditions were optimized by studying the effect of monomer/initiator concentration, solvents composition, reaction time and temperature. At optimized conditions, the maximum grafting efficiency and grafting ratio was ~ 50% and 51%, respectively with the presence of AM, whereas they decreased to 19% and 23%, respectively, without the presence of AM. Thermogravimetric analysis showed that as‐resulted graft copolymer had a lower thermal stability than homopolymer PVA. FTIR and 1H‐NMR confirmed chemical structure of as‐synthesized graft copolymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Thin, imprinted poly(4‐vinylphenol) (PVP) films were produced by spin coating using nicotine or its metabolite, cotinine, as template molecules. The template molecules were extracted from these films and later reloaded (or cross‐loaded) from solution. Depth sensing nanoindentation was applied to measure the nanomechanical properties of the imprinted polymer films. Changes in the nanomechanical properties were correlated to the functional state of the imprinted polymer, allowing identification of the films in their “as produced” state, “template removed state or “reloaded” state. In addition, the nanomechanical properties were capable of identifying which of the two template molecules were inserted in to a film. Reinsertion of a template molecule into a “template removed” film was found to increase the nanohardness over the values recorded for the “as produced” film. This behavior was discussed in terms of the hydrogen bonding characteristics of the materials (through density functional calculations) and the physical properties of poly(4‐vinylphenol) coatings. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
A series of thermosensitive hydrogels containing adamantyl groups were fabricated by copolymerization of N‐isopropylacrylamide and adamantyl methacrylate (AdMA). The thermal properties of such copolymeric hydrogels were studied by differential scanning calorimetry. The mechanical properties were emphasized through compression, tension, and dynamic mechanical analysis (DMA). Moreover, Rubber elasticity theory was used to evaluate the network parameters based on compressive stress–strain measurements. The results indicate that both the microstructure and physical properties strongly depend on the quantity of AdMA in the copolymeric gels. As the content of AdMA increases, the volume phase transition temperature of hydrogels decreases linearly, and the mechanical strength can be significantly improved, the effective crosslinking density (νe) increases monotonously, while the polymer‐water interaction parameter (χ) decreases first and then increases with AdMA content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Graft copolymerization of maleic anhydride (MA) onto poly(3‐hydroxybutyrate) (PHB) was carried out by use of benzoyl peroxide as initiator. The effects of various polymerization conditions on graft degree were investigated, including solvents, monomer and initiator concentrations, reaction temperature, and time. The monomer and initiator concentrations played an important role in graft copolymerization, and graft degree could be controlled in the range from 0.2 to 0.85% by changing the reaction conditions. The crystallization behavior and the thermal stability of PHB and maleated PHB were studied by DSC, WAXD, optical microscopy, and TGA. The results showed that, after grafting MA, the crystallization behavior of PHB was obviously changed. The cold crystallization temperature from the glass state increased, the crystallization temperature from the melted state decreased, and the growth rate of spherulite decreased. With the increase in graft degree, the banding texture of spherulites became more distinct and orderly. Moreover, the thermal stability of maleated PHB was obviously improved, compared with that of pure PHB. Its thermal decomposition temperature was enhanced by about 20°C. In addition, the introduction of the MA group promoted the biodegradability of PHB. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 659–668, 2003  相似文献   

17.
A nanocomposite of poly(N‐vinylcarbazole) (PNVC) and Al2O3 was prepared by precipitation of a preformed PNVC in a tetrahydrofuran solution onto an aqueous suspension of nanodimensional Al2O3. Prolonged extraction of a PNVC–Al2O3 composite by benzene failed to extract the loaded PNVC from the Al2O3, as shown by Fourier transform infrared studies. Scanning electron microscopy analyses revealed distinct morphological features of the composite, and transmission electron microscopy analyses confirmed that the particle sizes were in the range of 120–240 nm. Thermogravimetric analyses demonstrated the enhanced stability of the nanocomposite relative to the base polymer. Direct current conductivity of the PNVC–Al2O3 composites was found to be about 0.14 × 10?6 S/cm. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2233–2237, 2003  相似文献   

18.
Swift‐silver‐ion irradiation was explored as a means of forming chemically active sites on the surface of biaxially oriented polypropylene films. The active species, formed in air, was used to induce the graft copolymerization of glycidyl methacrylate in an aqueous solution. The surface structure, crystallinity, morphology, and hydrophilicity of the grafted samples were characterized with Fourier transform infrared, UV, wide‐angle X‐ray diffraction, scanning electron microscopy, and contact‐angle measurements. Glycidyl methacrylate could be grafted onto biaxially oriented polypropylene after swift‐heavy‐ion irradiation without an additional initiator. The contact angle of the modified films decreased with the grafting percentage of glycidyl methacrylate on the polypropylene. The swift silver ions induced significant grafting only in small regions (i.e., the latent tracks) of the polymer. Furthermore, as the fluence of swift heavy ions increased beyond an optimum value, the overlapping of the latent tracks reduced the grafting yield. The observed findings could be very useful in developing an initiator‐free grafting system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

19.
Blends of poly(styrene‐co‐acylonitrile) (SAN) with ethylene–propylene–diene monomer (EPDM) rubber were investigated. An improved toughness–stiffness balance of the SAN/EPDM blend was obtained when an appropriate amount of acrylonitrile–EPDM–styrene (AES) graft copolymer was added, prepared by grafting EPDM with styrene–acrylonitrile copolymer, and mixed thoroughly with both of the two components of the blend. Morphological observations indicated a finer dispersion of the EPDM particles in the SAN/EPDM/AES blends, and particle size distribution became narrower with increasing amounts of AES. Meanwhile, it was found that the SAN/EPDM blend having a ratio of 82.5/17.5 by weight was more effective in increasing the impact strength than that of the 90/10 blend. From dynamic mechanic analysis of the blends, the glass‐transition temperature of the EPDM‐rich phase increased from ?53.9 to ?46.2°C, even ?32.0°C, for the ratio of 82.5/17.5 blend of SAN/EPDM, whereas that of the SAN‐rich phase decreased from 109.2 to 108.6 and 107.5°C with the additions of 6 and 10% AES copolymer contents, respectively. It was confirmed that AES graft copolymer is an efficient compatibilizer for SAN/EPDM blend. The compatibilizer plays an important role in connecting two phases and improving the stress transfer in the blends. Certain morphological features such as thin filament connecting and even networking of the dispersed rubber phase may contribute to the overall ductility of the high impact strength of the studied blends. Moreover, its potential to induce a brittle–ductile transition of the glassy SAN matrix is considered to explain the toughening mechanism. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1685–1697, 2004  相似文献   

20.
Poly(3‐hydroxy octanoate) (PHO), poly(3‐hydroxy butyrate‐co‐3‐hydroxyvalerate) (PHBV), and linoleic acid were grafted onto chitosan via condensation reactions between carboxylic acids and amine groups. Unreacted PHAs and linoleic acid were eliminated via chloroform extraction and for elimination of unreacted chitosan were used 2 wt % of HOAc solution. The pure chitosan graft copolymers were isolated and then characterized by FTIR, 13C‐NMR (in solid state), DSC, and TGA. Microbial polyester percentage grafted onto chitosan backbone was varying from 7 to 52 wt % as a function of molecular weight of PHAs, namely as a function of steric effect. Solubility tests were also performed. Graft copolymers were soluble, partially soluble or insoluble in 2 wt % of HOAc depending on the amount of free primary amine groups on chitosan backbone or degree of grafting percent. Thermal analysis of PHO‐g‐Chitosan graft copolymers indicated that the plastizer effect of PHO by means that they showed melting transitions Tms at 80, 100, and 113°C or a broad Tms between 60.5–124.5°C and 75–125°C while pure chitosan showed a sharp Tm at 123°C. In comparison of the solubility and thermal properties of graft copolymers, linoleic acid derivatives of chitosan were used. Thus, the grafting of poly(3‐hydroxyalkanoate) and linoleic acid onto chitosan decrease the thermal stability of chitosan backbone. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:81–89, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号