首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In recent years, a wide variety of high‐power‐factor converter schemes have been proposed to solve the harmonic problem. The schemes are based on conventional boost, buck, or buck–boost topology, and their performance, such as output voltage control range in the boost and buck topology or efficiency in the buck–boost topology, is limited. To solve this, the authors propose a single‐phase high‐power‐factor converter with a new topology obtained from a combination of buck and buck–boost topology. The power stage performs the buck and buck–boost operations by a compact single‐stage converter circuit while the simple controller/modulator appropriately controls the alternation of the buck and buck–boost operation and maintains a high‐quality input current during both the buck and buck–boost operations. The proposed scheme results in a high‐performance rectifier with no limitation of output voltage control range and a high efficiency. In this paper, the principle and operation of the proposed converter scheme are described in detail and the theory is confirmed through experimental results obtained from 2‐kW prototype converter. © 2000 Scripta Technica, Electr Eng Jpn, 131(3): 91–100, 2000  相似文献   

2.
An active‐clamp zero‐voltage‐switching (ZVS) buck‐boost converter is proposed in this paper to improve the performance of converter in light load condition. By employing a small resonant inductor, the ZVS range of switches could be adjusted to very light load condition. Moreover, 2 clamping capacitors are added in the converter to eliminate the voltage spike on the switches during transition. The operating principle of the proposed converter is analyzed, and the optimal design guide for full range ZVS is also provided. A 60‐W output prototype is experimentally built and tested in laboratory to verify the feasibility of proposed converter. The measured results show the critical ZVS operation of power switches at 1 and 0.7‐W output power for buck and boost mode, respectively. The peak conversion efficiency is up to 92.3%.  相似文献   

3.
Contrast to conventional dependent double‐edge (DDE) pulse‐width modulation (PWM), independent double‐edge (IDE) PWM is investigated and applied to the control of switching dc‐dc converters, with improved digital‐peak‐voltage (IDPV) controlled buck converter in this paper. IDE modulation unifies all the PWM schemes reported up to now and is thus called as unified PWM. It is revealed that conventional trailing‐edge, leading‐edge, trailing‐triangle, and leading‐triangle modulations are special cases of IDE modulation. The control laws of IDPV controlled buck converter with IDE modulation are investigated and compared with those of IDPV with DDE modulation. Their stabilities and robustness are analyzed subsequently. Digital implementation of the unified PWM is also carried out. Steady‐state and transient performances of IDPV controlled buck converters with IDE modulation and DDE modulation are compared and verified by experimental results. It is concluded that steady‐state and transient performances of IDPV with IDE are better than those of IDPV with DDE modulation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes a new single‐phase buck‐boost power‐factor‐correction (PFC) converter with output‐voltage, ripple reducing operation. The converter consists of a conventional buck‐boost PFC converter and an additional switch to obtain a freewheeling mode of the dc inductor current, and is operated by two modulators. The first modulator controls the buck‐boost switch to obtain PFC. The other modulator controls the square value of the instantaneous dc inductor current to perform the output‐voltage‐ripple‐reducing operation. In the two modulations, the time integral value of the input and output currents in each modulation period are controlled directly and indirectly, respectively. Thus, modulation errors or undesirable distortions of the input current and output voltage ripple are eliminated even if the dc inductor current produces large ripple in a low‐frequency range. The theories and combination techniques for the two modulators, implementation, and experimental results are described. © 1998 Scripta Technica, Electr Eng Jpn, 126(2): 56–70, 1999  相似文献   

5.
This paper presents a new single‐stage single‐switch high power factor correction AC/DC converter suitable for low‐power applications (< 150 W) with a universal input voltage range (90–265 Vrms). The proposed topology integrates a buck–boost input current shaper followed by a buck and a buck–boost converter, respectively. As a result, the proposed converter can operate with larger duty cycles compared with the existing single‐stage single‐switch topologies, hence, making them suitable for extreme step‐down voltage conversion applications. Several desirable features are gained when the three integrated converter cells operate in discontinuous conduction mode. These features include low semiconductor voltage stress, zero‐current switch at turn‐on, and simple control with a fast well‐regulated output voltage. A detailed circuit analysis is performed to derive the design equations. The theoretical analysis and effectiveness of the proposed approach are confirmed by experimental results obtained from a 100‐W/24‐Vdc laboratory prototype. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A closed‐loop multistage multiphase switched‐capacitor converter (n‐stage p‐phase MPSC) is proposed with a variable‐phase control (VPC) and a pulse‐width‐modulation (PWM) technique for low‐power step‐up conversion and high‐efficiency regulation. In this n‐stage MPSC, n voltage doublers are connected in series for boosting the voltage gain up to 2n at most. Here, VPC is suggested to realize a variable multiphase operation by changing the phase number p and topological path for the more suitable level of voltage gain so as to improve the power efficiency, especially for the lower output voltage Besides, PWM is adopted not only to enhance output regulation for different desired outputs, but also to reinforce output robustness to source/loading variation. Further, some theoretical analyses and designs include: n‐stage p‐phase MPSC model, steady‐state analysis, conversion ratio, power efficiency, output ripple, stability, capacitance selection, and control design. Finally, the closed‐loop MPSC is simulated, and the hardware is implemented and tested. All the results are illustrated to show the efficacy of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we have proposed Single‐Inductor Dual‐Output (SIDO) buck–buck and boost–boost dc–dc converter using improved RC ripple regulator control. The proposed SIDO buck–buck converter has the characteristics of low‐ripple and high control frequency. RC ripple regulator control cannot be applied to SIDO boost–boost converter because RC ripple regulator undergoes self‐excited oscillation and two self‐excited oscillating controllers make the SIDO converter unstable. Thus we proposed the priority circuit for RC ripple regulator control. The proposed control circuit improves response characteristic and simplicity of the control circuit. Simulations are performed to verify the validity of the proposed SIDO converter. Simulation results indicate good performance of the proposed SIDO converter.  相似文献   

8.
This article proposes an LED driver that consists of a ceramic‐capacitor‐input rectifier and a buck‐boost converter. The LED driver has an advantage of long life because it does not contain any electrolytic capacitors. However, the issue with electrolytic capacitor‐less LED driver is that the ripple of the smoothed voltage becomes large due to insufficient capacitance of the smoothing capacitor. The proposed method, which uses the discontinuous current mode of a buck‐boost converter, reduces the output current ripple under such conditions. Experimental results using a 5.7 W LED driver prototype demonstrate that the proposed method reduces the output current ripple and that the percent flicker becomes 4.4%, which is smaller than the recommended upper limit of 8%.  相似文献   

9.
A novel high‐efficiency transformerless buck–boost DC–DC converter is proposed in this paper. The presented converter voltage gain is higher than that of the conventional boost, buck–boost, CUK, SEPIC and ZETA converters, and high voltage gain can be obtained with a suitable duty cycle. The voltage stress across the power switch is low. Hence, the low on‐state resistance of the power switch can be selected to decrease conduction loss of the switch and improve efficiency. The input current ripple in the presented converter is low. The principle of operation and the mathematical analyses of the proposed converter are explained. The validity of the presented converter is verified by the simulation results in PSCAD/EMTDC software and experimental results based on the prototype circuit with 250 W and 40 kHz. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
This paper proposed a novel high step‐up converter with double boost paths. The circuit uses two switches and one double‐path voltage multiplier cell to own the double boost and interleaved effects simultaneously. The voltage gain ratio of the proposed DC‐DC converter can be three times the ratio of the conventional boost converter such that the voltage stress of the switch can be lower. The high step‐up performance is in accordance with only one double‐path voltage multiplier cell. Therefore, the number of diodes and capacitors in the proposed converter can be reduced. Furthermore, the interleaved property of the proposed circuit can reduce the losses in the rectifier diode and capacitor. The prototype circuit with 24‐V input voltage, 250‐V output voltage, and 150‐W output power is experimentally realized to verify the validity and effectiveness of the proposed converter. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this study, a Z‐source alternating current‐to‐alternating current (AC–AC) converter with a specific topology, which can provide both buck and boost modes, is investigated. This converter, which can be implemented easily, utilizes only two switches with complemented commands. A comparison between the Z‐source AC–AC converter and a conventional thyristor voltage controlled one is presented here, and it shows that in the most areas, the Z‐source converter provides a faster response and lower total harmonic distortion of the output currents than the conventional one. Moreover, the Z‐source converter is also extended to the multiphase systems. In addition, a new arrangement of this converter is proposed here to remove the isolated single‐phase sources. Furthermore, an open‐loop method is proposed for soft‐starting applications. Finally, a closed‐loop control system is also suggested for a three‐phase Z‐source converter to soft start and control the speed of an induction motor. Computer simulations show the validity and effectiveness of the proposed schemes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
To enhance the convergent rate and robustness of buck‐type DC‐DC converter system, a new finite‐time voltage regulation control algorithm is proposed in this paper. First, an average state space‐based model is analyzed, which considers both the parameters uncertainties and the variations of load and input voltage. By using saturation finite‐time control theory, at the first step, in the absence of disturbance, a new fast voltage regulation control algorithm is designed, which can guarantee that the output voltage converges to the reference voltage in a finite time. Because the saturation constraint is considered during the controller design, the duty ratio function of the converter satisfies the constraint between 0 and 1. Second, in the presence of disturbance, a finite‐time convergent disturbance observer is designed to estimate the unknown disturbances in a finite time. Finally, a disturbance observer‐based finite‐time voltage regulation control algorithm is developed. Compared with PI (Proportional‐Integral) control algorithm, circuit simulations show that the proposed algorithm has a faster regulation performance and stronger robustness performance on disturbance rejection.  相似文献   

13.
In this paper, we report a novel single‐switch AC to DC step‐down converter suitable for light emitting diodes. The proposed topology has a buck and a buck–boost converter. The circuit is designed to operate in the discontinuous conduction mode in order to improve the power factor. In this topology, a part of the input power is connected to the load directly. This feature of the proposed topology increases the efficiency of power conversion, improves the input power factor, produces less voltage stress on intermediate stages, and reduces the output voltage in the absence of a step‐down transformer. The theoretical analysis, design procedure, and performance of the proposed converter are verified by simulation and experiment. A 36 V, 60 W prototype has been built to demonstrate the merits of this circuit. © 2017 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

14.
In this paper, a buck‐boost converter circuit for wireless power transfer via inductive links in bio‐implantable systems is presented. The idea is based on reusing the power receiver coil to design a regulator. This method employs five switches to utilize the coil inductor in a frequency other than the power‐receiving signal frequency. Reusing the coil inductor decreases the on‐chip regulator area and makes it suitable for bio‐implants. Furthermore, in the proposed technique, the regulator efficiency becomes almost independent of the coil receiving voltage amplitude. The proposed concept is employed in a buck‐boost regulator, and simulation results are provided. For a 10 MHz received signal with the amplitude variation within 3 ~ 6 V and with the converter switching rate of 200 kHz, the achieved maximum efficiency is 78%. The proposed regulator can also deliver 10 μA to 4 mA to its load while its output voltage varies from 0.6 to 2.3 V. Simulations of the proposed converter are performed in Cadence‐Spectre using TSMC 0.18 μm CMOS technology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
This paper proposes a power electronics converter capable of canceling the input current ripple at preselected duty cycle. The proposed converter is an extended topology of a buck–boost converter aided by a boost‐type converter that improves the quality of the current drawn from the direct current source. The voltage gain of the proposed converter is increased as well, with a minimum of extra component added to the original buck–boost power converter. These features make the proposed converter ideal for low voltage generation sources, such as photovoltaic panel and fuel cell applications. Along this paper, the state space mathematical model is developed to provide the key design guidelines. The theoretical analysis is validated through computer simulation and hardware prototyping.  相似文献   

16.
A new type of three‐phase quasi‐Z‐source indirect matrix converter (QZS‐IMC) is proposed in this paper. It uses a unique impedance network for achieving voltage‐boost capability and making the input current in continuous conduction mode (CCM) to eliminate the input filter. The complete modulation strategy is proposed to operate the QZS‐IMC. Meanwhile, a closed‐loop DC‐link peak voltage control strategy is proposed, and the DC‐link peak voltage is estimated by measuring both the input and capacitor voltages. With this proposed technique, a high‐performance output voltage control can be achieved with an excellent transient performance even if there are input voltage and load current variations. The controller is designed by using the small‐signal model. Vector control scheme of the induction motor is combined with the QZS‐IMC to achieve the motor drive. A QZS‐IMC prototype is built in laboratory, and experimental results verify the operating principle and theoretical analysis of the proposed converter. The simulation tests of QZS‐IMC based inductor motor drive are carried out to validate the proposed converter's application in motor drive. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, an extensible 2‐phase interleaved high step‐up converter with automatic current balance is presented. This converter uses coupled inductors and energy‐transferring capacitors to improve the voltage gain of the traditional 2‐phase interleaved boost converter as well as employs these energy transferring capacitors to do automatic current balance. Furthermore, the voltage gain can be enhanced not only by adjusting the turns ratio but also by increasing the numbers of phases, diodes, and energy‐transferring capacitors. Therefore, it can be used in high input current and high step‐up voltage applications. In this paper, the basic operating principles of the proposed converter are described and analyzed, and finally, its effectiveness is demonstrated by experiment. In addition, the field‐programmable gate array, named EP13T100C8N and manufactured by Altera Co, is used as a control kernel, and an experimental prototype, with input voltage of 12 V, output voltage of 200 V, and rated output power of 200 W, is given to provide the effectiveness of the proposed converter.  相似文献   

18.
The quadratic DC‐DC converter can broaden the voltage conversion ratio, which meets the requirements of wide input voltage. However, large‐scale variation of input voltage puts forward harsh requirements on ability to resist input disturbance of control strategy. Quadratic buck converter (QBC) is pulsed nonlinear dynamic systems, so the one‐cycle control strategy based on robustness principle may provide better rejection of power source than the linear feedback control. But the traditional one‐cycle controlled QBC (TOCCQBC) suffers from poor ability against load disturbance and steady‐state error. To overcome aforementioned shortages, an improved OCCQBC is proposed by adding inductor current to diode voltage as integral variable and introducing feedback of output voltage. The paper first introduces the working principle of the QBC, and second, the OCCQBC is presented. Then, a mathematical model using small signal analysis of the OCCQBC is established, and an experimental prototype with a power of 6 W is set up. Simulation and experimental results verify the correctness of the theoretical analysis and the feasibility of the strategy.  相似文献   

19.
An interleaved DC‐DC converter with soft switching technique is presented. There are two converter modules in the adopted circuit to share the load power. Since the interleaved pulse‐width modulation (PWM) is adopted to control two circuit modules, the ripple currents at input and output sides are naturally reduced. Therefore the input and output capacitances can be reduced. In each circuit module, a conventional boost converter and a voltage doubler configuration with a coupled inductor are connected in series at the output side to achieve high step‐up voltage conversion ratio. Active snubber connected in parallel with boost inductor is adopted to limit voltage stress on active switch and to release the energy stored in the leakage and magnetizing inductances. Since asymmetrical PWM is used to control active switches, the leakage inductance and output capacitance of active switches are resonant in the transition interval. Thus, both active switches can be turned on at zero voltage switching. The resonant inductance and output capacitances at the secondary side of transformer are resonant to achieve zero current switching turn‐off for rectifier diodes. Therefore, the reverse recovery losses of fast recovery diodes are reduced. Finally, experiments based on a laboratory prototype rated at 400 W are presented to verify the effectiveness of the proposed converter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes design and implementation of a digitally controlled single‐inductor dual‐output (SIDO) buck converter operating in discontinuous conduction mode. This converter adopts time‐multiplexing control in providing two independent output voltages using only an inductor. The design issues of the digital controller are discussed, including static and dynamic characteristics. Implementation of the controller, a modified hybrid digital pulse width modulator and a single look‐up table are developed. The digital controller was implemented on a field‐programmable gate array‐based control board. Experimental results demonstrating system validity are presented for a SIDO buck converter with nominal 3.6 V input voltage, and the outputs are regulated at 1.8 and 2.2 V. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号