首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Atopic dermatitis (AD) is characterized clinically by severe dry skin and functionally by both a cutaneous barrier disruption and an impaired water-holding capacity in the stratum corneum (SC) even in the nonlesional skin. The combination of the disrupted barrier and water-holding functions in nonlesional skin is closely linked to the disease severity of AD, which suggests that the barrier abnormality as well as the water deficiency are elicited as a result of the induced dermatitis and subsequently trigger the recurrence of dermatitis. These functional abnormalities of the SC are mainly attributable to significantly decreased levels of total ceramides and the altered ceramide profile in the SC. Clinical studies using a synthetic pseudo-ceramide (pCer) that can function as a natural ceramide have indicated the superior clinical efficacy of pCer and, more importantly, have shown that the ceramide deficiency rather than changes in the ceramide profile in the SC of AD patients plays a central role in the pathogenesis of AD. Clinical studies of infants with AD have shown that the barrier disruption due to the ceramide deficiency is not inherent and is essentially dependent on postinflammatory events in those infants. Consistently, the recovery of trans-epidermal water loss after tape-stripping occurs at a significantly slower rate only at 1 day post-tape-stripping in AD skin compared with healthy control (HC) skin. This resembles the recovery pattern observed in Niemann–Pick disease, which is caused by an acid sphingomyelinase (aSMase) deficiency. Further, comparison of ceramide levels in the SC between before and after tape-stripping revealed that whereas ceramide levels in HC skin are significantly upregulated at 4 days post-tape-stripping, their ceramide levels remain substantially unchanged at 4 days post-tape-stripping. Taken together, the sum of these findings strongly suggests that an impaired homeostasis of a ceramide-generating process may be associated with these abnormalities. We have discovered a novel enzyme, sphingomyelin (SM) deacylase, which cleaves the N-acyl linkage of SM and glucosylceramide (GCer). The activity of SM deacylase is significantly increased in AD lesional epidermis as well as in the involved and uninvolved SC of AD skin, but not in the skin of patients with contact dermatitis or chronic eczema, compared with HC skin. SM deacylase competes with aSMase and β-glucocerebrosidase (BGCase) to hydrolyze their common substrates, SM and GCer, to yield their lysoforms sphingosylphosphorylcholine (SPC) and glucosylsphingosine (GSP), respectively, instead of ceramide. Consistently, those reaction products (SPC and GSP) accumulate to a greater extent in the involved and uninvolved SC of AD skin compared with chronic eczema or contact dermatitis skin as well as HC skin. Successive chromatographies were used to purify SM deacylase to homogeneity with a single band of ≈43 kDa and with an enrichment of >14,000-fold. Analysis of a protein spot with SM deacylase activity separated by 2D-SDS-PAGE using MALDI-TOF MS/MS allowed its amino acid sequence to be determined and to identify it as the β-subunit of acid ceramidase (aCDase), an enzyme consisting of α- and β-subunits linked by amino-bonds and a single S-S bond. Western blotting of samples treated with 2-mercaptoethanol revealed that whereas recombinant human aCDase was recognized by antibodies to the α-subunit at ≈56 and ≈13 kDa and the β-subunit at ≈43 kDa, the purified SM deacylase was detectable only by the antibody to the β-subunit at ≈43 kDa. Breaking the S-S bond of recombinant human aCDase with dithiothreitol elicited the activity of SM deacylase with an apparent size of ≈40 kDa upon gel chromatography in contrast to aCDase activity with an apparent size of ≈50 kDa in untreated recombinant human aCDase. These results provide new insights into the essential role of SM deacylase as the β-subunit aCDase that causes the ceramide deficiency in AD skin.  相似文献   

2.
Disruption of the skin barrier function caused by epidermal hyper-proliferation, results in the skin becoming dry and showing high transepidermal water loss (TEWL). Gamma linolenic acid (GLA) is reportedly efficacious for treating TEWL and epidermal hyper-proliferation. In this study, to elucidate the effect of GLA-rich oil on skin function, GLA-containing food was given to adults with dry skin or mild atopic dermatitis and skin parameters were evaluated. In the results, we recognized beneficial effects on the TEWL index. The efficacy of GLA was also demonstrated to be statistically significant especially in subjects with pro-inflammatory features. The results suggest that the mechanism of improvement of skin barrier has been associated with possible generation of anti-inflammatory metabolites from GLA. The clinical physician also confirmed that none of the subjects showed any noteworthy side effects. GLA-enriched food appears to be safe and to improve skin barrier function in subjects with dry skin conditions and mild atopic dermatitis.  相似文献   

3.
Skin barrier functions, environmental insults, and genetic backgrounds are intricately linked and form the basis of common inflammatory skin disorders, such as atopic dermatitis, psoriasis, and seborrheic dermatitis, which may seriously affect one’s quality of life. Topical therapy is usually the first line of management. It is believed that successful topical treatment requires pharmaceutical formulation from a sufficient dosage to exert therapeutic effects by penetrating the stratum corneum and then diffusing to the target area. However, many factors can affect this process including the physicochemical properties of the active compound, the composition of the formulation base, and the limitations and conditions of the skin barrier, especially in inflammatory skin. This article briefly reviews the available data on these issues and provides opinions on strategies to develop a suitable formulation for inflammatory skin disease treatment.  相似文献   

4.
Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.  相似文献   

5.
Because ceramide-like lipo-amino acid cholesteryl derivatives can exert a bound water-holding function due to their lamellae-forming properties, in this study, we determined if topical application of those derivatives to atopic dry skin would elicit an ameliorative effect on skin symptoms, at least on its water-holding function. In this clinical study, daily treatment with a nano-emulsion containing 10% phytosteryl/octyldodecyl lauroyl glutamate (POLG) significantly (p < 0.0001) improved skin symptoms, including dryness/scaling, itchiness and stimulus sensations, in the non-lesional skin of patients with atopic dermatitis (AD) at 3 and at 6 weeks compared with week 0. Those significant improvements in skin symptoms were accompanied by a significantly enhanced water content (conductance) and a significant improvement of roughness (SESC) and smoothness (SESM) values measured using a Visioscan at 3 and 6 weeks. Those effects appeared concomitant with a significantly increased corneocyte size, a significantly down-regulated degree of thick abrasions, and a significant impairment of the corneocyte lipid envelope at 6 weeks. Thus, our clinical study suggests, for the first time, that topical application of the POLG nano-emulsion has the distinct potential to ameliorate atopic dry skin symptoms, particularly scaling and itchiness, in the skin of patients with AD. Those effects result from alleviation of the disrupted water-holding function probably due to the increased supply of lamellae structures into the stratum corneum despite the failure to improve barrier function.  相似文献   

6.
Ceramides, a class of sphingolipids containing a backbone of sphingoid base, are the most important and effective structural component for the formation of the epidermal permeability barrier. While ceramides comprise approximately 50% of the epidermal lipid content by mass, the content is substantially decreased in certain inflammatory skin diseases, such as atopic dermatitis (AD), causing improper barrier function. It is widely accepted that the endocannabinoid system (ECS) can modulate a number of biological responses in the central nerve system, prior studies revealed that activation of endocannabinoid receptor CB1, a key component of ECS, triggers the generation of ceramides that mediate neuronal cell fate. However, as the impact of ECS on the production of epidermal ceramide has not been studied, we here investigated whether the ECS stimulates the generation of epidermal ceramides in an IL-4-treated in vitro model of skin inflammation using N-palmitoyl serinol (PS), an analog of the endocannabinoid N-palmitoyl ethanolamine. Accordingly, an IL-4-mediated decrease in cellular ceramide levels was significantly stimulated in human epidermal keratinocytes (KC) following PS treatment through both de novo ceramide synthesis- and sphingomyelin hydrolysis-pathways. Importantly, PS selectively increases ceramides with long-chain fatty acids (FAs) (C22–C24), which mainly account for the formation of the epidermal barrier, through activation of ceramide synthase (CerS) 2 and Cer3 in IL-4-mediated inflamed KC. Furthermore, blockade of cannabinoid receptor CB1 activation by AM-251 failed to stimulate the production of total ceramide as well as long-chain ceramides in response to PS. These studies demonstrate that an analog of endocannabinoid, PS, stimulates the generation of specific ceramide species as well as the total amount of ceramides via the endocannabinoid receptor CB1-dependent mechanism, thereby resulting in the enhancement of epidermal permeability barrier function.  相似文献   

7.
测定了聚甘油-6二硬脂酸酯、聚甘油-10硬脂酸酯、聚甘油-10二棕榈酸酯制备的乳液的粒径、皮肤水分含量、经皮水分流失TEWL.结果表明,聚甘油-6二硬脂酸酯制备的乳液分散性较好,乳液粒径分布较小;聚甘油-10二棕榈酸酯制备的乳液在皮肤水分含量、经皮水分流失TEWL值上优于其他2组.  相似文献   

8.
Lamellar lipid layers in the stratum corneum (SC), the outermost layer of the skin, act as a primary permeability barrier to protect the body. The roles of SC lipid composition and membrane structure in skin barrier function have been extensively investigated using ex-vivo SC samples and reconstructed SC lipids in the form of multi-lamellar lipids or liposomes. The primary lipids, especially ceramide, have been found to be highly important. Atopic dermatitis (AD) is a well-known chronic inflammatory skin disease with immunologic and epidermal abnormalities of the permeability barrier; therefore, a comparison of SC lipids in AD skin with those in normal skin is a promising method to explore the mechanisms of skin barrier function. Here, we focused on the effect of sphingoids (ceramide metabolites and a minor component of the SC lipids) and their content/species on skin barrier function. A significant difference in the leakage ratio was observed between model SC lipid liposomes with a different sphingolipid ratio (sphingosine/sphinganine), with a value of 5.43 for normal skin vs. 14.3 for AD skin. This result shows a good concordance with AD mouse experiments. Therefore, an alteration in the composition of minor SC lipids resulting from a ceramide metabolic abnormality can affect the membrane integrity (i.e., skin barrier function). Small angle X-ray scattering (SAXS) measurements revealed no distinct differences in the SAXS pattern between the 3 models, with all models forming a rigid membrane (i.e., a nearly hydrated solid). According to increasing the temperature, the peaks indicated that the lamellar structures decreased in all models and that the lateral packing of lipids decreased, which suggested annealing or melting of the gel to a liquid crystal, although no distinct phase transition was observed through fluorescence anisotropy measurements. Hence, we assume that the altered sphingoid composition triggers local membrane structural changes (i.e., formation of domains or clusters).  相似文献   

9.
10.
11.
Although the pathogenesis of atopic dermatitis (AD) remains to be fully deciphered, skin barrier abnormality and immune dysregulation are known to be involved. Recently, the vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) system has also been implicated in the pathogenesis of this multifactorial chronic inflammatory skin disorder. Previously, we showed that a novel tetrapeptide, N-acetyl-Arg-Leu-Tyr-Glu (Ac-RLYE), inhibits angiogenesis and vascular permeability effectively by selectively antagonizing VEGFR-2. The current study aimed to investigate the pharmacological effect of Ac-RLYE on AD in vitro and in vivo. The in vitro experiments demonstrated that Ac-RLYE inhibited VEGF-induced vascular permeability in endothelial cells. Moreover, in an in vivo animal model of AD, Ac-RLYE relieved AD-like symptoms such as ear thickness and dermatitis severity scores and infiltration of immune cells, including mast cells and eosinophils. Ac-RLYE inhibited IgE secretion, restored the skin barrier protein filaggrin level, and markedly downregulated gene expression of AD-related Th1, Th2, and Th17 cytokines. Collectively, these findings suggest that Ac-RLYE would be useful for the treatment of AD and associated inflammatory skin disorders.  相似文献   

12.
Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.  相似文献   

13.
Sphingolipids are crucial for the life of the cell. In land‐dwelling mammals, they are equally important outside the cell—in the extracellular space of the skin barrier—because they prevent loss of water. Although a large body of research has elucidated many of the functions of sphingolipids, their extensive structural diversity remains intriguing. A new class of sphingolipids based on 6‐hydroxylated sphingosine has recently been identified in human skin. Abnormal levels of these 6‐hydroxylated ceramides have repeatedly been observed in atopic dermatitis; however, neither the biosynthesis nor the roles of these unique ceramide subclasses have been established in the human body. In this Minireview, we summarize the current knowledge of 6‐hydroxyceramides, including their discovery, structure, stereochemistry, occurrence in healthy and diseased human epidermis, and synthetic approaches to 6‐hydroxysphingosine and related ceramides.  相似文献   

14.
The stratum corneum with its unique structure of corneocytes and intercellular lipid lamellae enables a protection of human and other mammalian skin against transepidermal water loss and harmful substances from the environment. Among these lipids, ceramides play a key role. Several skin disorders such as psoriasis, atopic dermatitis and others show a disturbed barrier function, which can be linked in part to a changed ceramide pattern. Research in dermatology and cosmetic industry requires the use of analytical methods to characterize ceramides. However, the amazing variability of ceramide structures found in stratum corneum makes their analysis a challenge. This is to our knowledge the first review that deals with ceramide analysis. It is focused on stratum corneum ceramides which show much more complexity than intracellular ceramides known to be signal transducers. After a short summary of lipid extraction methods, we discuss the following set of methods: thin‐layer chromatography, gas chromatography, HPLC, LC/MS, mass spectrometry, NMR spectroscopy, vibrational spectroscopy, and X‐ray diffraction. It will be lined out which information about structure, concentration or physical state is available by means of each particular method. Although the focus is clearly on stratum corneum ceramides, some methods of general skin lipid analysis and structure analysis of sphingolipids are also discussed when appropriate.  相似文献   

15.
Ceramides are a class of sphingolipids which are implicated in skin disorders, obesity, and other metabolic diseases. As a class with pleiotropic effects, recent efforts have centred on discerning specific ceramide species and their effects on atopic dermatitis, obesity, type 2 diabetes, and cardiovascular diseases. This delineation has allowed the identification of disease biomarkers, with long acyl chain ceramides such as C16- and C18-ceramides linked to metabolic dysfunction and cardiac function decline, while ultra-long acyl chain ceramides (>25 carbon acyl chain) were reported to be essential for maintaining a functional skin barrier. Given the intricate link between free fatty acids with ceramides, especially the de novo synthetic pathway, intracellular lipid droplet formation is increasingly viewed as an important mechanism for preventing accumulation of toxic ceramide species. Here, we review recent reports of various ceramide species involved in skin abnormalities and metabolic diseases, and we propose that promotion of lipid droplet biogenesis can be seen as a potential protective mechanism against deleterious ceramides.  相似文献   

16.
Indole-3-lactic acid (I3LA) is a well-known metabolite involved in tryptophan metabolism. Indole derivatives are involved in the differentiation of immune cells and the synthesis of cytokines via the aryl hydrocarbon receptors for modulating immunity, and the indole derivatives may be involved in allergic responses. I3LA was selected as a candidate substance for the treatment of atopic dermatitis (AD), and its inhibitory effect on AD progression was investigated. Full-thickness human skin equivalents (HSEs) consisting of human-derived cells were generated on microfluidic chips and stimulated with major AD-inducing factors. The induced AD-HSEs were treated with I3LA for 7 days, and this affected the AD-associated genetic biomarkers and increased the expression of the major constituent proteins of the skin barrier. After the treatment for 14 days, the surface became rough and sloughed off, and there was no significant difference between the increased AD-related mRNA expression and the skin barrier protein expression. Therefore, the short-term use of I3LA for approximately one week is considered to be effective in suppressing AD.  相似文献   

17.
Currently, the mechanism of progression of atopic dermatitis (AD) is not well understood because there is no physiologically appropriate disease model in terms of disease complexity and multifactoriality. Type 2 inflammation, mediated by interleukin (IL)-4 and IL-13, plays an important role in AD. In this study, full-thickness human skin equivalents consisting of human-derived cells were fabricated from pumpless microfluidic chips and stimulated with IL-4 and IL-13. The morphological properties, gene expression, cytokine secretion and protein expression of the stimulated human skin equivalent (HSE) epidermis were investigated. The results showed epidermal and spongy formations similar to those observed in lesions in AD, and decreased expression of barrier-related filaggrin, loricrin and involucrin genes and proteins induced by IL-4Rα signaling. In addition, we induced the expression of carbonic anhydrase II (CAII), a gene specifically expressed in the epidermis of patients with AD. Thus, AD human skin equivalents can be used to mimic the key pathological features of atopic dermatitis, overcoming the limitations of existing studies that rely solely on mouse models and have been unable to translate their effects to humans. Our results will be useful for future research on the development of therapeutic agents for atopic dermatitis.  相似文献   

18.
The discovery in 2006 that loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and can predispose to atopic dermatitis (AD) galvanized the dermatology research community and shed new light on a skin protein that was first identified in 1981. However, although outstanding work has uncovered several key functions of filaggrin in epidermal homeostasis, a comprehensive understanding of how filaggrin deficiency contributes to AD is still incomplete, including details of the upstream factors that lead to the reduced amounts of filaggrin, regardless of genotype. In this review, we re-evaluate data focusing on the roles of filaggrin in the epidermis, as well as in AD. Filaggrin is important for alignment of keratin intermediate filaments, control of keratinocyte shape, and maintenance of epidermal texture via production of water-retaining molecules. Moreover, filaggrin deficiency leads to cellular abnormalities in keratinocytes and induces subtle epidermal barrier impairment that is sufficient enough to facilitate the ingress of certain exogenous molecules into the epidermis. However, although FLG null mutations regulate skin moisture in non-lesional AD skin, filaggrin deficiency per se does not lead to the neutralization of skin surface pH or to excessive transepidermal water loss in atopic skin. Separating facts from chaff regarding the functions of filaggrin in the epidermis is necessary for the design efficacious therapies to treat dry and atopic skin.  相似文献   

19.
New Results by Infraredspectroscopic Determination of Horney Layer Hydration The possibilities for in vivo infrared spectroscopy of human skin in various inquiries are discussed with reference to the literature. The use of this method for measurement of the hydration of the horny layer is described in detail. Our observations show that high hydration values are sometimes found in children, the elderly, and patients with atopic dermatitis. Two further investigations clearly demonstrate that relationships between skin surface lipids and transepidermal water loss on the one hand and the hydration of the horny layer on the other hand are improbable under chosen experimental conditions. Moreover, two examples show that emulsions do not only lead to a superficial hydration, but also a deep hydration of the horny layer. The extent of the hydration differed only slightly with the use of a O/W emulsion (60% water) as compared to a W/O emulsion (30% water). Soap and surfactant solutions produced hydration of the horny layer in the first minutes after application. Ten minutes later this effect was no longer demonstrable.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号