首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study aimed to produce MAG through low‐temperature chemical glycerolysis. Over 80% MAG yield with 97% TAG conversion was obtained within short reaction times at temperature of 35–55°C, when tert‐butanol (TB) or tert‐pentanol (TP) was used as reaction medium and sodium hydroxide (NaOH) as catalyst. TB gave a faster reaction rate than TP. Catalysts were important for the low‐temperature chemical glycerolysis reaction. Of the eight common base catalysts evaluated, only NaOH and potassium hydroxide (KOH) were effective, and NaOH was better than KOH. Reaction parameters were studied and optimized. The optimum conditions were TB dosage 3:1 (TB to oil in weight ratio), NaOH concentration 0.45 wt% based on oil, molar ratio of glycerol to oil 5:1. Under these conditions, similar MAG yield and TAG conversion was also observed by Novozym 435 catalyzed glycerolysis, however, a 4 h reaction was required. Practical applications: The process of NaOH catalyzed chemical glycerolysis for MAG production in TB solvent system described in this study provides several advantages including short reaction time and high product yield, which is potential for industrial considerations.  相似文献   

2.
The solvent-free glycerolysis of used sunflower oil catalyzed by acetone powder of Nigella sativa seeds was investigated. The highest partial acylglycerols yield was obtained at 60°C. The glycerolysis reactions, conducted at molar ratios of 1:1, 2:1, and 3:1 of oil to glycerol keeping the acetone powder content at 30% based on oil weight and the temperature at 60°C, approached equilibrium after 2 h. The highest partial acylglycerol content of the products was 66% (1:1 molar ratio) and 60% (2:1 molar ratio).  相似文献   

3.
In the present study, we synthesized biodiesel from soybean oil through a transesterification reaction catalyzed by lithium carbonate. Under the optimal reaction conditions of methanol/oil molar ratio 32:1, 12 % (wt/wt oil) catalyst amount, and a reaction temperature of 65 °C for 2 h, there was a 97.2 % conversion to biodiesel from soybean oil. The present study also evaluated the effects of methanol/oil ratio, catalyst amount, and reaction time on conversion. The catalytic activity of solid base catalysts was insensitive to exposure to air prior to use in the transesterification reaction. Results from ICP-OES exhibited non-significant leaching of the Li2CO3 active species into the reaction medium, and reusability of the catalyst was tested successfully in ten subsequent cycles. Free fatty acid in the feedstock for biodiesel production should not be higher than 0.12 % to afford a product that passes the EN biodiesel standard. Product quality, ester content, free glycerol, total glycerol, density, flash point, sulfur content, kinematic viscosity, copper corrosion, cetane number, iodine value, and acid value fulfilled ASTM and EN standards. Commercially available Li2CO3 is suitable for direct use in biodiesel production without further drying or thermal pretreatment, avoiding the usual solid catalyst need for activation at high temperature.  相似文献   

4.
The solvent-free glycerolysis of used sunflower oil catalyzed by acetone powder of Nigella sativa seeds was investigated. The highest partial acylglycerols yield was obtained at 60°C. The glycerolysis reactions, conducted at molar ratios of 1:1, 2:1, and 3:1 of oil to glycerol keeping the acetone powder content at 30% based on oil weight and the temperature at 60°C, approached equilibrium after 2 h. The highest partial acylglycerol content of the products was 66% (1:1 molar ratio) and 60% (2:1 molar ratio).  相似文献   

5.
以茶油精炼副产物皂脚和甲醇为原料,NaOH为催化剂,经酯交换合成生物柴油,研究了工艺条件对皂脚合成生物柴油收率的影响。结果表明,适宜的工艺条件为:醇油摩尔比为5∶1,反应时间为30 min,反应温度为30℃,催化剂NaOH用量为油重的0.7%,反应收率为98.0%。  相似文献   

6.
硝酸镧改性钙镁锌催化剂制备生物柴油   总被引:1,自引:0,他引:1  
通过掺杂不同比例的硝酸镧实现对钙镁锌三金属氧化物固体碱催化剂的改性,对改性催化剂用于制备生物柴油的工艺条件的了优化,并通过SEM的方法对改性催化剂的表面结构进行表征。结果表明硝酸镧的加入可以降低钙镁锌三金属氧化物固体碱催化剂最适催化温度并减少催化剂用量。添加3%(质量分数)的硝酸镧的改性钙镁锌体系催化剂,在反应温度为50℃时,醇油摩尔比为15∶1,反应时间为1h时,生物柴油产率可达到86.8%。这种改性催化剂更适于工业化应用。  相似文献   

7.
朱丽苹  吕志凤  战风涛  盖玉娟 《应用化工》2007,36(10):1014-1016
采用硫酸作催化剂,利用高酸值油脂与甲醇的酯交换反应,制备生物柴油。为了提高收率,采用了两次酯交换反应;考察了醇油摩尔比、催化剂用量、反应温度等因素对收率的影响。结果表明,当醇与油的摩尔比为1∶10,催化剂用量0.5%,反应时间2.0 h,反应温度150℃,压力0.4~0.6 MPa时,生物柴油的收率可达98%。  相似文献   

8.
BACKGROUND: A series of NaOH catalysts supported on commercial silica have been prepared by conventional incipient wetness impregnation and their activity tested in the reaction of transesterification of refined sunflower oil with methanol at 323 K and atmospheric pressure. The effects of the molar methanol/oil ratio, catalyst concentration, NaOH loading and calcination of the supported catalysts have been investigated. RESULTS: It has been found that the transesterification rate largely depends on the catalyst/methanol ratio and that calcination of the NaOH catalysts supported on silica, even at moderate temperatures, had a very negative effect on their activity. Selectivity, on the other hand, is more affected by the methanol/oil ratio. Selectivity for methyl esters (biodiesel) improved with the methanol/oil ratio due to an increased transesterification rate of diglycerides, whereas the selectivity for monoglycerides was not affected. CONCLUSION: The NaOH/silica catalysts suffered from a significant lack of chemical stability under reaction conditions as evidenced by measurements of sodium extracted during the reaction progress; therefore, their performance was affected by the presence of Na dissolved in the methanol phase. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
In this study, transesterification of soybean oil to biodiesel using CaO as a solid base catalyst was studied. The reaction mechanism was proposed and the separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and water content were investigated. The experimental results showed that a 12:1 molar ratio of methanol to oil, addition of 8% CaO catalyst, 65 °C reaction temperature and 2.03% water content in methanol gave the best results, and the biodiesel yield exceeded 95% at 3 h. The catalyst lifetime was longer than that of calcined K2CO3/γ-Al2O3 and KF/γ-Al2O3 catalysts. CaO maintained sustained activity even after being repeatedly used for 20 cycles and the biodiesel yield at 1.5 h was not affected much in the repeated experiments.  相似文献   

10.
This study investigates the use of cordierite honeycomb monoliths coated with solid acids such as zirconia, Mo(VI)/ZrO2 and Pt‐SO42?/ZrO2 and solid bases like zirconia–calcia, zirconia–magnesia mixed oxides in the synthesis of biodiesel from oil (PG‐oil). Solid acids were used for the esterification of free fatty acids in PG‐oil with methanol to reduce the percentage of free fatty acids in the oil followed by transesterification of PG‐oil over solid bases to synthesize biodiesel. The oxide catalysts were coated on honeycombs by an impregnation technique and characterized for their surface acidity/basicity, crystallinity and morphology. The effect of the molar ratio of PG‐oil/methanol in esterification and transesterification was studied. Reactivation and reusability of both solid acid and solid base catalysts was investigated. The catalysts were also prepared in their powder forms and their activity was compared with that of honeycomb coated forms. A twofold increase in the yield of biodiesel was obtained when the catalysts were used in honeycomb coated forms. The results revealed that the honeycombs coated with mixed oxides such as zirconia–calcia and zirconia–magnesia were economical, efficient and eco‐friendly (3e concept) for biodiesel production with ~95 % yield.  相似文献   

11.
Due to decreasing oil resources, alternative fuels such as biodiesel are required. The nanomagnetic catalyst CaO/NaY‐Fe3O4 was synthesized and used for biodiesel production from canola oil. The structure of the catalysts was characterized by X‐ray diffraction, field emission scanning electron microscopy, Brunauer‐Emmett‐Teller method, Fourier transform infrared spectroscopy, and vibrating sample magnetometer method. To optimize the influence of the operating variables, such as the methanol/canola oil molar ratio, the amount of catalyst, and the reaction time, on the yield of transesterification reaction, an experimental design was applied based on the Box‐Behnken method. The optimum values of these variables were predicted by the cubic model and were in excellent agreement with the experimental results.  相似文献   

12.
Rapid transesterification of soybean oil with phase transfer catalysts   总被引:1,自引:0,他引:1  
Biodiesel is a renewable, non-toxic and biodegradable alternative fuel for compression ignition engines. Biodiesel is produced mainly through base-catalyzed transesterification of animal fats or vegetable oils. However, the conventional base-catalyzed transesterification is characterized by slow reaction rates at both initial and final reaction stages limited by mass transfer between polar methanol/glycerol phase and non-polar oil phase.In our study we used phase transfer catalysts (PTCs) to facilitate anion transfer between polar methanol/glycerol phase and non-polar oil phase to speed up transesterification. The benefits of transesterification by PTCs include no need for expensive aprotic solvents, potentially simpler scaleup and higher activity (shorter reaction time). Various PTCs were investigated for base-catalyzed transesterification. Experimental results showed that base-catalyzed transesterification was enhanced with an effective PTC, indicated by the formation of high methyl ester (ME) content within a relatively short time. Individual operating variables such as molar ratios of methanol to oil, total OH to oil, PTC to base catalyst and agitation including ultrasound were investigated for transesterification with PTC. Product analyses showed that ME content higher than 96.5 wt.% was achieved after only 15 min of rapid transesterification with PTC (tetrabutylammonium hydroxide or tetrabutylammonium acetate as PTC, MeOH/oil molar ratio of 6, total OH/oil molar ratio of 0.22, PTC/KOH molar ratio of 1 and 60 °C). Free and total glycerol contents in the final product from 15 min rapid transesterification with PTC were lower than maximum allowable limits in the standard specification for biodiesel.  相似文献   

13.
利用叔丁醇作为共溶剂可使棕榈油、甲醇和催化剂形成均相体系,用于酯交换反应制备生物柴油,可以缩短反应时间。实验以棕榈油为原料,氢氧化钠为催化剂,在带夹套的玻璃反应器内进行反应。考察了共溶剂质量分数、催化剂质量分数、反应温度、醇油摩尔比等因素对生物柴油产率的影响,获得了最佳反应条件。实验结果表明,当叔丁醇质量为棕榈油质量的11.6%,催化剂质量为油质量的1.0%,反应温度为60℃,醇油摩尔比为6∶1时,反应2 m in后生物柴油产率达到了90%。  相似文献   

14.
Magnetic solid base catalysts were prepared by loading Na2SiO3 on Fe3O4 nano-particles with Na2O·3SiO2 and NaOH as precipitator. The catalysts were used to catalyze the transesterification reactions for the production of fatty acid methyl esters (FAME, namely biodiesel) from cottonseed oil. The optimum conditions of the catalysts' preparation and transesterification reactions were investigated by orthogonal experiments. The catalyst with the highest catalytic activity was obtained when Si/Fe molar ratio of 2.5, aging time of 2 h, calcination temperature of 350 °C, calcination time of 2.5 h. Magnetic of the catalyst was characterized with Vibrating Sample Magnetometer (VSM) and transmission electron microscopy photograph (TEM), and the results showed the catalyst Na2SiO3/Fe3O4 had good specific saturation magnetization and paramagnetism, and its water resistance was better than the traditional homogeneous base catalysts; under the transesterification conditions of methanol/oil molar ratio of 7:1, catalyst dosage of 5%, reaction temperature of 60 °C, reaction time of 100 min and stirring speed of 400 rpm, yield of biodiesel was 99.6%. The lifetime and recovery rate of the magnetic solid base catalyst were much better than those of Na2SiO3.  相似文献   

15.
KF-impregnated nanoparticles of γ-Al2O3 were calcinated and used as heterogeneous catalysts for the transesterification of vegetable oil with methanol for the synthesis of biodiesel (fatty acid methyl esters, FAME). The ratio of KF to nano-γ-Al2O3, calcination temperature, molar ratio of methanol/oil, transesterification reaction temperature and time, and the concentration of the catalyst were used as the parameters of the study. A methyl ester yield of 97.7 ± 2.14% was obtained under the catalyst preparation and transesterification conditions of KF loading of 15 wt%, calcination temperature of 773 K, 8 h of reaction time at 338 K, and using 3 wt% catalysts and molar ratio of methanol/oil of 15:1. This relatively high conversion of vegetable oil to biodiesel is considered to be associated with the achieved relatively high basicity of the catalyst surface (1.68 mmol/g) and the high surface to volume ratio of the nanoparticles of γ-Al2O3.  相似文献   

16.
Glycerolysis of palm and palm kernel oils were carried out using commercial lipases from Candida antarctica (Novozym 435) and Mucor miehei (Novozym 388) as catalyst (500 units lipase/g oil) at 40°C and with an oil:glycerol molar ratio of 1:2 in a solvent-free system. Novozym 435 catalyzed the glycerolysis of palm and palm kernel oils giving reaction products in similar compositions. Partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils were 64% (wt) and 66% (wt), respectively. However, partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils conducted with Novozym 388 as catalyst at the same conditions were 44% (wt) and 56% (wt), respectively. On the other hand, free fatty acid contents of the glycerolysis products of palm and palm kernel oils obtained using Novozym 388 were higher, 25–30% (wt), than those obtained by Novozym 435, 4–5% (wt). The monoacylglycerols fraction with the highest content of oleic acid, 62.7% (wt), was obtained from the palm kernel oil glycerolysis reaction catalyzed by Novozym 435.  相似文献   

17.
Glycerolysis of palm and palm kernel oils were carried out using commercial lipases from Candida antarctica (Novozym 435) and Mucor miehei (Novozym 388) as catalyst (500 units lipase/g oil) at 40°C and with an oil:glycerol molar ratio of 1:2 in a solvent-free system. Novozym 435 catalyzed the glycerolysis of palm and palm kernel oils giving reaction products in similar compositions. Partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils were 64% (wt) and 66% (wt), respectively. However, partial acylglycerols contents of the glycerolysis products obtained from palm and palm kernel oils conducted with Novozym 388 as catalyst at the same conditions were 44% (wt) and 56% (wt), respectively. On the other hand, free fatty acid contents of the glycerolysis products of palm and palm kernel oils obtained using Novozym 388 were higher, 25-30% (wt), than those obtained by Novozym 435, 4-5% (wt). The monoacylglycerols fraction with the highest content of oleic acid, 62.7% (wt), was obtained from the palm kernel oil glycerolysis reaction catalyzed by Novozym 435.  相似文献   

18.
Transesterification of the crude Jatropha curcas L. oil catalyzed by micro‐NaOH in supercritical/subcritical methanol was studied. The effects of various reaction variables such as the catalyst content, reaction temperature, reaction pressure and the molar ratio of methanol to oil on the conversion of crude Jatropha curcas L. oil to biodiesel were investigated. The results showed that even micro‐NaOH could noticeably improve this reaction. When NaOH was added from 0.2 to 0.5 to 0.8 wt‐‰ of triacylglycerols, the transesterification rate increased sharply; when the catalyst content was further increased, the reaction rate was just poorly improved. It was observed that increasing the reaction temperature had a favorable influence on the methyl ester yield. For the molar ratio ranging from 18 to 36, the higher the molar ratio of methanol to oil was charged, the faster the transesterification rate seemed. At the fixed stirring rate of 400 rpm, when the catalyst content, reaction temperature, reaction pressure and the molar ratio of methanol to oil were developed at 0.8 wt‐‰ NaOH, 523 K, 7.0 MPa and 24 : 1, respectively, the methyl ester yield could reach 90.5% within 28 min. Further, the kinetics of this reaction was involved and the results showed that it was a pseudo‐first‐order reaction whose apparent activation energy was 84.1 kJ/mol, and the pre‐exponential factor was 2.21×105.  相似文献   

19.
以麻疯树油、亚麻油、乌柏油为原料油,采用固定化脂肪酶Lipozyme TL IM,在3.0 g油、1 mL正己烷、醇油摩尔比为3.5∶1、固定化酶质量为油质量20%的条件下进行生物柴油的制备,通过脂肪酸甲酯产率和组成分析,以考察生物柴油制备的影响因素,进行反应时间优化.结果表明,酶的催化作用对脂肪酸组分不存在选择性,且...  相似文献   

20.
Kaolin clay material was loaded with potassium carbonate by impregnation method as a novel, effective, and economically heterogeneous catalyst for biodiesel production of sunflower oil via the transesterification reaction. The structural and chemical properties of the produced catalysts were characterized through several analyses including the X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller specific surface area. These revealed the best catalyst for the investigated reaction among different ones prepared based upon various impregnation extent of the potassium carbonate. The influence of this parameter was examined through a comparison of the catalytic activity of differently produced catalysts. The impregnation amount of 20 wt% K2CO3 upon the kaolin achieved the highest catalytic activity attributed to its highest basicity. To expand upon the efficiency of transesterification, such reaction parameters including the molar ratio between methanol and oil, reactor loading of the catalyst, and time duration of the reaction were optimized. The highest yield of biodiesel over the K2O/kaolin catalyst was around 95.3 ± 1.2%, which was achieved using the kaolin support impregnated with 20 wt% of K2CO3 under optimum reaction conditions of the catalyst, reactor loading of 5 wt%, reaction temperature of 65 °C, methanol:oil molar ratio of 6:1, and reaction duration time of 4 hours. Ultimately, this optimized catalyst was demonstrated to successfully withstand the aforementioned optimum criteria up to five consecutive reaction cycles while experiencing a rather negligible loss of about 10% of its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号