首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of scraped-surface tube cooler temperatures on the isothermal solid fat content (SFC) of palm oil margarine during processing and on margarine consistency (yield value, g/cm2), SFC, and polymorphic changes in storage were studied. SFC was measured in the mixing tank after leaving the tube cooler and the pin worker. The SFC at the tube cooler exit was proportional to the amount of cooling; a higher SFC was produced by more extreme cooling treatment. The SFC of all margarines were reduced in the pin worker, and the reduction was related to the initial SFC profile of palm oil. Margarine samples were stored at 28°C for 28 d and tested daily. Margarine processed at 25°C in the tube cooler had the highest consistency and the least change in SFC, but by the second week crystals had transformed into the β form. Uniform product consistency and SFC were observed in margarines processed at 20 and 15°C. These margarines retained the β′ crystal form for 3 and 4 wk, respectively. The best palm oil margarine was obtained with a tube cooler temperature of 15°C and a residence time of 1.8 min.  相似文献   

2.
Developing trans-free alternative fat solutions suitable for specific applications remains a challenge in edible fats and other domains. This is particularly true for palm oil-based puff pastry margarines, which suffer from post crystallization problems, leading to dramatic loss of functionality. This research is aimed at investigating the influence of triacylglycerol (TAG) compositions of palm oil-based puff pastry margarines on the physical properties of the fat crystal network, which determine the functionality of such products. Three model puff pastry margarines are produced at pilot scale under the same crystallization conditions. They share the same fatty acid composition and close solid fat content (SFC) profiles, whereas the proportions of major TAG (tripalmitoylglycerol (PPP), 1,3-di-palmitoyl-2-oleoylglycerol (POP), 1,2-di-palmitoyl-3-oleoylglycerol (PPO), 1,2-dioleoyl-3-palmitoylglycerol (POO)) are different. Polymorphism, melting profile, hardness, microscopic structures, and baking performance (puffing effect) of the model fats are examined during a period of 6 months. The following results are obtained: 1) The TAG composition significantly influences the post crystallization processes occurring in palm oil-based margarines. 2) High amounts of POP show negative influences. 3) The proportions of POP, PPO, and PPP should be carefully balanced to prevent detrimental crystal network rearrangements, leading to textural modifications (hardness increase) and significant reduction in baking performance. Practical Applications : The results presented in this work could be helpful for edible fat products developers, especially for roll-in fat applications. This research provides an overview of the relevant properties to study for the assessment of puff pastry margarine functionality. It also highlights the importance of ensuring long-term stability of palm oil-based fat products. Finally, it emphasizes that certain combinations of fat materials should be avoided to maintain the quality of palm oil-based puff pastry margarines.  相似文献   

3.
Interesterified blends of hard palm stearin (IV of 11) and canola oil (hPS/CO) in ratios of 20 : 80, 30 : 70, 40 : 60, 50 : 50, 60 : 40 and 70 : 30 were prepared using immobilized Thermomyces lanuginosus lipase (Lipozyme TL IM). Comparison of physical properties was carried out between non‐interesterified and enzymatically interesterified products by monitoring their slip melting point (SMP), solid fat content (SFC), melting thermogram and polymorphism behavior. The Lipozyme TL IM‐catalyzed interesterification significantly modified the physical properties of the hPS:CO blends. The results showed that all the interesterified blends had lower SMP and SFC than their unreacted blends. The SMP result showed that the interesterified blends of hPS/CO 40 : 60, 50 : 50 and 60 : 40 could be useful for stick margarine and shortening applications, respectively. From the SFC analysis, the interesterified blends of hPS/CO 40 : 60 have SFC curves similar to vanaspati. The interesterified blends of hPS/CO 50 : 50 and 60 : 40 have SFC curves similar to margarines, puff pastry margarine and shortening. Interesterification had replaced the higher‐ and lower‐melting triacylglycerols by the middle‐melting triacylglycerols, yielding mixtures of lower SMP and SFC, compared to the original palm stearin. X‐ray diffraction analysis indicated the appearance of β' crystals in all the interesterified hPS/CO blends from predominantly β‐type oils.  相似文献   

4.
Blends of hydrogenated and nonhydrogenated tea seed oil (Lahijan variety) (30:70, w/w) were chemically interesterified at 60, 90, and 120°C for 30, 60, and 90 min in the presence of 1% (w/w) NaOH. Physicochemical properties of the products were compared with those of the noninteresterified mixture. Statistical comparison of m.p., iodine values (IV), and solid fat contents (SFC) showed that the sample having the highest ranking was interesterified at 120°C for 30 min. The sample was used as a hardstock (40%), with liquid tea seed oil and sunflower oil (ratios of 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) as, a softstock (60%) for production of table magarine, and the properties of these margarines were compared with those of commercial ones. Samples E and D (ratio of 80:20 and 60:40 liquid tea seed oil/sunflower oil, respectively) had the lowest significant differences with commercial table margarine for physicochemical (m.p., IV, and SFC) and organoleptic characteristics, respectively. Generally, based on m.p. and SFC, margarines E and D were classified as soft margarine. The trans FA content of E, D, and commercial margarines were 1.8, 1.8, and 2.2%, respectively.  相似文献   

5.
This study aims to produce an oleic acid‐rich table margarine from Moringa oleifera seed oil (MoO)‐palm stearin (PS) blend (70:30, w/w) and compare its composition, thermal behavior, and textural properties during storage with those of commercial margarines (CM1 and CM2). The major fatty acid in MoO/PS blend, CM1 and CM2 is oleic acid (67.85%, 38.54%, and 35.35%, respectively). Hence, many of their triacylglycerols are derived from the acid. MoO/PS blend has a higher complete melting temperature (43.50 °C) compared to CM1 (35.50 °C) and CM2 (35.53 °C). The solid fat content (SFC) of MoO/PS blend at 10 °C (28.7%) is lower than CM1 (32%) and CM2 (68.4%). However, the MoO/PS blend has a higher SFC (6.47%) at 35 °C compared to CMs. At 20 °C, the viscosity of experimental blend margarine (EBM) decreases but CM1 and CM2 increase at the end of the storage study. After 8 weeks of storage, all margarines are harder and CM2 is the hardest. The adhesiveness of EMB and CM2 is similar to the fresh samples while CM1 is more adhesive after storage. In short, it is possible to produce an oleic acid‐enriched margarine from MoO/PS blend that has better textural properties. Practical Applications: Moringa oleifera seed oil is one of the superior oils that contains high levels of oleic acid. However, its high iodine value and low melting point limit its application in the production of margarine. This study shows that direct blending of M. oleifera seed oil with palm stearin could produce margarine with high oleic acid contents and better textural properties in terms of viscosity, hardness, and adhesiveness. The informative data provide supporting evidence for blending of M. oleifera seed oil with palm stearin to produce margarine that could overcome the issues that hinder the M. oleifera seed oil from being produced into margarine.  相似文献   

6.
In this study, four margarine hardstocks were produced, two from enzymatically interesterified fats at 80 and 100% conversion, one from chemically randomized fat and one from physically mixed fat. These four hardstocks, blended with 50% sunflower oil, were mainly used for the production of table margarines in a pilot plant. Storage stability studies were carried out at storage temperatures of 5 and 25 °C for 12 wk. Margarines from the enzymatically interesterified fats were compared to the margarines produced by the conventional methods (chemical interesterification and physical blending) and to selected commercial margarines. The changes in the chemical properties of the products, including peroxide values (PV), tocopherols, free fatty acids, volatile oxidation products, and sensory evaluation, were examined during storage. It was observed that the margarine produced from the chemically interesterified fat had higher PV in weeks 4, 8 and 10 than the margarines produced from the enzymatically interesterified fats and the physically blended fat. These differences were not caused by different contents of tocopherols in the hardstocks. The differences between the processes for chemical and enzymatic interesterification, including further treatment stages, might be responsible for the development of a high PV in the margarine produced from the chemically interesterified fat. However, the contents of volatiles did not show the same tendency as observed for PV for the margarines stored at 25 °C during 12 wk. Storage at 25 °C accelerated oxidation compared to storage at 5 °C. The content of δ‐ and γ‐tocopherols decreased faster than the content of α‐ and β‐tocopherols during storage. This phenomenon was only affected by storage time, not by storage temperature. Sensory analysis did not show consistent differences between the produced margarines and commercial margarines, and no hydrolysis occurred for these four margarines during storage. The margarines produced from the enzymatically interesterified fats had low PV and a similar taste and smell compared to the margarine produced from the chemically interesterified fat.  相似文献   

7.
Dietary trans fatty acids (TFA) are of major concern because of their adverse effects on blood lipid levels and coronary heart disease. In Canada, margarines were significant sources of TFA during the 1980s and 1990s. However, this is expected to change with increased public awareness over their adverse health effects and the introduction of new legislature to include TFA content on the Nutritional Facts table of food labels. In this study, the TFA content of the top-selling 29 Canadian margarines, which represented 96.3% of the market share, was determined by capillary gas-liquid chromatography in order to assess the influence of regulatory development during the 3-year transition period between the announcement of new food labelling regulations in Canada that require mandatory declaration of the trans fat content in most pre-packaged foods in January 2003 and its enforcement on 12 December 2005. The 29 margarines included 15 tub margarines made from non-hydrogenated vegetable oils (NHVO-tub margarines), 11 tub margarines made from partially hydrogenated vegetable oils (PHVO-tub margarines) and three print margarines, which were also made from partially hydrogenated vegetable oils (PHVO-print margarines). The 15 NHVO tub-margarines accounted for 71% of the total margarine market share and generally contained less than 2% TFA (mean value 0.9 ± 0.3% of total fatty acids). The mean total TFA contents of PHVO-tub margarines and PHVO-print margarines, were 20.0 ± 4.5% and 39.6 ± 3.5%, and their market shares were 19.3 and 6.0%, respectively. Although during the last 10 years, increasing number of soft tub margarines that contained very little trans fats have been made available in Canada, the PHVO-tub- and -print margarines still contain high levels of trans fats similar to those margarines that were sold in the 1990s. The market share data suggest that the margarines prepared using NHVO and containing almost no TFA were preferred by Canadians over those margarines prepared using PHVO, even before the mandatory declaration of TFA content came into effect on 12 December 2005.  相似文献   

8.
In this study, we investigated the effect of monoacylglycerol (MAG) as a structuring agent on the physicochemical, microstructure and rheological properties of chicken fat. The fatty acid composition, oxidative stability, free fatty acids (FFA), slip melting point (SMP), solid fat content (SFC), kinetics of crystallization, microstructure and rheological properties of the samples were evaluated. The addition of MAG at a 0.5 % level did not affect the fatty acid composition, induction period of oxidation at 110 °C (IPox110), SFC curve or rheological properties of chicken fat (p > 0.05). However, structured samples containing 3.0 and 5.0 % MAG had higher saturated fatty acid (SFA) content, SFC, SMP, FFA content and IPox110 (p < 0.05). The addition of MAG led to a reduction in the IP of oxidation at 60 °C (IPox60) and increased the oxidation rate of fats, as measured by the Schaal oven test. Samples containing 3–5 % MAG had higher SFC content, higher loss, storage and complex moduli, higher complex viscosity, and a lower induction period of crystallization (IPcryst) and tan δ than chicken fat. Investigations by polarized light microscopy confirmed the presence of increased crystal content in samples containing higher MAG levels. These results show that structured chicken fats have the potential for application in the production of soft tub margarine and Iranian vanaspati.  相似文献   

9.
Transesterification of fat blends rich in n‐3 polyunsaturated fatty acids (n‐3 PUFA), catalysed by a commercial immobilised thermostable lipase from Thermomyces lanuginosa, was carried out batch‐wise. Experiments were performed, following central composite rotatable designs (CCRDs) as a function of reaction time, temperature and media formulation. Mixtures of palm stearin, palm kernel oil and a commercial concentrate of triacylglycerols rich in n‐3 PUFA (“EPAX 2050TG” in CCRD‐1 and “EPAX 4510TG” in CCRD‐2) were used. The time‐course of transesterification was indirectly followed by the solid fat content (SFC) values of the blend at 10 °C, 20 °C, 30 °C and 35 °C. A decrease in all SFC values of the blends at 10 °C, 20 °C, 30 °C and 35°C was observed upon transesterification. The SFC10 °C and SFC20 °C of transesterified blends varied between 18 and 48 and SFC35 °C between 6 and 24. These values fulfil the technological requirements for the production of margarines. Under our conditions, lipid oxidation may be neglected. However, the accumulation up to 8.3% free fatty acids in reaction media is a problem to overcome. The development of response surface models, describing both the final SFC value and the SFC decrease, will allow predicting results for novel proportions of fats and oils and/or a novel combination time‐temperature.  相似文献   

10.
Commercially available butter, regular-fat margarine, and a fat-reduced margarine (38% fat w/w) were stored between 10 and 35°C for up to 4 d to elaborate on the relationship between droplet size and solid fat content (SFC) that exists in these spreads. At 10°C, the mean volume-weighted droplet size for butter was 4.22±0.40 μm followed by margarine (6.22±0.10 μm) and fat-reduced margarine (12.62±0.28 μm). At higher temperatures, as a result of decreasing SFC, the mean droplet size increased as did the droplet size distribution, leading to eventual coalescence and destabilization in all spreads. In butter, the critical SFC was ∼9%, whereas in margarine notable coalescence occurred at ∼5% SFC. The fat-reduced margarine destabilized at lower temperatures than the other spreads (∼20°C vs. ∼30°C), at an SFC of ∼6.5%. In these spreads, two different mechanisms influenced dispersed phase stability: (i) steric stabilization against coalescence via fat crystals located at the droplet interface, known as Pickering stabilization, and (ii) stabilization against droplet sedimentation (and droplet encounters) due to the presence of the fat crystal network.  相似文献   

11.
In this study, the fatty acid profile of 42 margarines marketed in Mexico was identified and quantified including the total trans fatty acids (TFA). The ratio of the sum of cholesterol-lowering fatty acids CLFA (cis-oleic, linoleic and α-linolenic fatty acids) to the sum of cholesterol-raising fatty acids CRFA (C12:0, C14:0, C16:0, TFA) and the ω6/ω3 ratio were calculated to evaluate the nutritional quality of the margarine samples. The results showed that the high content of C12:0, C14:0 and C16:0 fatty acids in some samples indicated the use of coconut and palm oils instead of partially hydrogenated fatty acids in order to decreased TFA content. Of the samples, 33% had less than 1 g/100 g of fat which could be considered as “free from TFA” according to the Danish Legislation. The ω6/ω3 ratio ranged between 5.85:1 and 25.85:1, the ideal relation being 5–10:1. The CLFA/CRFA ranged from 0.46 to 3.10, being the recommended ratio as high as possible. Of the 42 margarines, only five samples had an acceptable fatty acid profile, that is, low TFA and saturated fatty acids, high monounsaturated fatty acids content and adequate ω6/ω3 and CLFA/CRFA ratios.  相似文献   

12.
Soft (tub) margarines were analyzed for fatty acid,trans and polyunsaturated fatty acid (PUFA) content. Soybean and sunflower-palm kernel-palm margarines contained high levels ofcis-cis methylene interrupted (CCMI)-PUFA. Canola and canola-palm products contained the lowest amounts of saturated fatty acids. Polymorphic forms of the crystals were as follows: soybean beta prime, canola beta, canola-palm and a sunflower-palm kernel-palm—a mixture of beta and beta prime. Dropping points of the fats ranged from 27.3 to 34.2°C. Softening points of the products were higher especially for margarines that existed in the beta form. Texture was determined by cone penetrometer, constant speed compression and penetration. Soybean margarines were generally most resistant to deformation. The solid fat content (SFC) of the “whole” margarines as determined by the Bruker Minispec was found to be slightly lower than that of the separated fat (AOCS-method) at 10°C. Correlation of values within the textural methods was significant (P<.01), but not between the texture and SFC of the product which means that the nature of the crystal network also plays a role in texture.  相似文献   

13.
Fat blends, formulated by mixing a highly saturated fat (palm stearin or fully hydrogenated soybean oil) with a native vegetable oil (soybean oil) in different ratios from 10:90 to 75:25 (wt%), were subjected to chemical interesterification reactions on laboratory scale (0.2% sodium methoxide catalyst, time=90 min, temperature=90°C). Starting and interesterified blends were investigated for triglyceride composition, solid fat content, free fatty acid content, and trans fatty acid (TFA) levels. Obtained values were compared to those of low- and high-trans commercial food fats. The interesterified blends with 30–50% of hard stock had plasticity curves in the range of commercial shortenings and stick-type margarines, while interesterified blends with 20% hard stock were suitable for use in soft tubtype margarines. Confectionery fat basestocks could be prepared from interesterified fat blends with 40% palm stearin or 25% fully hydrogenated soybean oil. TFA levels of interesterified blends were low (0.1%) compared to 1.3–12.1% in commercial food fats. Presented at the 88th AOCS Annual Meeting and Expo, May 11–14, 1997, Seattle, Washington.  相似文献   

14.
Trans FA (TFA), solid fat contents (SFC), and slip melting points of 12 different tub and stick margarines marketed in Turkey were examined in this study. No trans isomers were found in four margarines, which suggests they were formulated from interesterified or blended fats and oils. The products with no TFA generally had more short-chain saturated FA, which suggests coconut oil-based oil components. TFA content of the other 10 products varied from 7.7 to 37.8%. Compared to the products formulated in North America, Turkish margarines contain more TFA and have higher SFC.  相似文献   

15.
Highly saturated (HS) soybean oil (SBO), which contained 23.3% palmitic acid (C16:0) and 20.0% stearic acid (C18:0), was interesterified at 70°C in preparation for the processing of a trans-free margarine. High-performance liquid chromatography analysis of the triacylglycerides and analysis of the sn-2 fatty acid composition showed no further change after 10 min of interesterification. The interesterified HS SBO had a slip melting point of 34.5°C, compared with 9.5°C in the non-interesterified HS SBO, and increased melting and crystallization temperatures were found using differential scanning calorimetry. Analysis of solid-fat content by nuclear magnetic resonance revealed the presence of only a small amount of solids above 33°C. A 50:50 blend of interesterified HS SBO and SBO with a typical fatty acid composition was used to make the margarine. Compared to commercial soft-tub margarine, the maximal peak force on the texture analyzer of this blended margarine was about 2.3 times greater, the hardness about 2.6 times greater, and adhesiveness about 1.5 times greater. There were small but statistically significant differences (α=0.05) in the sensory properties of spreadability, graininess, and waxiness between the commercial and blended margarines at 4.5°C and, except for graininess, at 11.5°C. These very small differences suggest a potential use for HS SBO in margarine products.  相似文献   

16.
In the margarine and butter industry, sustainable and more efficient refrigerants, such as CO2, are introduced to industrial scraped surface heat exchangers, allowing an increased capacity compared to conventional use of NH3. The effect of such changes in capacity and a varied rotational speed was studied in relation to the structural behavior of puff pastry butter during 4 weeks of isothermal storage at 20 °C. The physical properties of the fat crystal network were studied in detail at several length scales by combining X-ray diffraction with differential scanning calorimetry, confocal laser scanning microscopy, LR-NMR and rheology. Our data shows that a high capacity combined with high rotational speed decreases the brittleness of puff pastry butter after 7 days of storage. This effect is, however, diminished after 28 days of storage. Likewise, changes in capacity and rotational speed are shown to induce no microstructural and polymorphic differences after 28 days of storage. However, the degree of work softening is related to the manufacturing conditions: a high capacity and a high rotational speed increase the ability of the puff pastry butter to resist structural breakdown during working. With this being the only observed difference; a wide operational window exists on an industrial level to produce puff pastry butter with similar structural behavior.  相似文献   

17.
Two gas chromatography (GC) procedures were compared for routine analysis of trans fatty acids (TFA) of vegetable margarines, one direct with a 100-m high-polarity column and the other using argentation thin-layer chromatography and GC. There was no difference (P>0.05) in the total trans 18∶1 percentage of margarines with a medium level of TFA (∼18%) made using either of the procedures. Both methods offer good repeatability for determination of total trans 18∶1 percentage. The recoveries of total trans isomers of 18∶1 were not influenced (P>0.1) by the method used. Fatty acid composition of 12 Spanish margarines was determined by the direct GC method. The total contents of trans isomers of oleic, linoleic, and linolenic acids ranged from 0.15 to 20.21, from 0.24 to 0.99, and from 0 to 0.47%, respectively, and the mean values were 8.18, 0.49, and 0.21%. The mean values for the ratios [cis-polyunsaturated/(saturated +TFA)] and [(cis-polyunsaturated + cis-monounsaturated)/(saturated +TFA)] were 1.25±0.39 and 1.92±0.43, respectively. Taking into account the annual per capita consumption of vegetable margarine, the mean fat content of the margarines (63.5%), and the mean total TFA content (8.87%), the daily per capita consumption of TFA from vegetable margarines by Spaniards was estimated at about 0.2 g/person/d.  相似文献   

18.
A heterogeneous catalysis method to produce 20 % conjugated linoleic acid (CLA)-rich food-grade soy oil in 2 h without solvents or gases was recently developed. The objective of this study was to produce and characterize CLA-rich soy oil margarine relative to a soy oil control and commercial margarine. CLA-rich soy oil was used to prepare margarine. The samples were characterized for firmness, rheology, thermal behavior, solid fat content (SFC) and microstructure and compared with a soy oil control and commercial margarine. The CLA-rich oil margarine firmness and rheological properties were similar to commercial margarine and provided a better texture relative to the soy oil control margarine. However, SFC, droplet size distribution and melting behavior of CLA-rich oil margarine were similar to control soy oil margarine and dissimilar to the commercial product. This suggests that hardness and rheological properties of margarine are not solely dependent on SFC and melting behavior. Lipid composition, polymorphism and microstructure differences in CLA-rich oil margarine may play an important role on the texture and rheological properties. A 7-g typical serving of the CLA-rich oil margarine will provide 0.6 g CLA. Thus five servings will provide 3.2 g/day of CLA and 185 calories/day, which is well within the maximum recommended 700–980 fat calories/day.  相似文献   

19.
A total of 82 dietary fats sold on the Bulgarian market in the period 1995—2000 were analyzed. The samples included 68 table margarines (50 of which were imported), 10 frying fats (6 imported) and 4 salad dressings (all imported). A validated analytical method, thin‐layer chromatography‐AgNO3‐densitometry, was used. It enabled direct determination of all fatty acid groups, differing by degree of unsaturation and double bonds geometry. Low levels of trans fatty acids (TFA) down to 0.1% of the total for mono trans‐trienoic (Tcct) and mono trans‐dienoic (Dct), and down to 0.2% for trans‐monoenoic (Mt) were quantitated, with an error under 3% and a standard deviation of 0.1—1.5. The total content of TFA in table margarines varied from 0 to 26.9% with a mean value of 8.6 ± 7.2% for imported and 1.6 ± 3.4% for Bulgarian samples. Saturated fatty acids (SFA) content varied from 11.5 to 45.7%, with a mean value of 25.4 ± 5.7% for imported and 26.9 ± 5.2% for Bulgarian margarines. A general trend of lower levels of TFA and SFA in imported margarines was observed over the studied period. Additionally, the content of individual saturated fatty acids was determined by gasliquid chromatography in 37 of all studied samples.  相似文献   

20.
Physicochemical, textural and viscoelastic properties of palm diacylglycerol (PDG) bakery margarines (DOS720, DOS721 and DOS711) and commercial margarine (CM) throughout a 3-month storage period were evaluated and compared. All the margarines had significant (P < 0.05) increments in slip melting point (SMP), solid fat content (SFC) and hardness during storage with CM having the highest overall increment followed by margarines DOS711, DOS 721 and DOS720. The smaller increments are mainly due to the ability of PDG to delay polymorphic transformation from β′ to β form. In terms of viscoelastic properties, all margarines had a higher degree of firmness which may probably be due to rearrangement of the fat crystals into a three-dimensional scaffolding network upon storage. In terms of melting behavior, storage has no effects on all margarines with the exception of margarine DOS711. The melting behavior of margarine DOS711 displayed a probability of oil exudation during storage. As for polymorphic transformation, CM had the earliest polymorphic transformation with only β crystals after 8 weeks of storage. PDG bakery margarines managed to retard the transformation to more than 10 weeks of storage for DOS711 and 12 weeks of storage for DOS720 and DOS721.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号