共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study a two‐dimensional model of a tubular solid oxide fuel cell operating in a stack is presented. The model analyzes electrochemistry, momentum, heat and mass transfers inside the cell. Internal steam reforming of the reformed natural gas is considered for hydrogen production and Gibbs energy minimization method is used to calculate the fuel equilibrium species concentrations. The conservation equations for energy, mass, momentum and voltage are solved simultaneously using appropriate numerical techniques. The heat radiation between the preheater and cathode surface is incorporated into the model and local heat transfer coefficients are determined throughout the anode and cathode channels. The developed model has been compared with the experimental and numerical data available in literature. The model is used to study the effect of various operating parameters such as excess air, operating pressure and air inlet temperature and the results are discussed in detail. The results show that a more uniform temperature distribution can be achieved along the cell at higher air‐flow rates and operating pressures and the cell output voltage is enhanced. It is expected that the proposed model can be used as a design tool for SOFC stack in practical applications. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
2.
P. Dokamaingam S. Assabumrungrat A. Soottitantawat I. Sramala N. Laosiripojana 《International Journal of Hydrogen Energy》2009
In the present work, mathematical models of indirect internal reforming solid oxide fuel cells (IIR-SOFC) fueled by methane were developed to analyze the thermal coupling of an internal endothermic reforming with exothermic electrochemical reactions and determine the system performance. The models are based on steady-state, heterogeneous, two-dimensional reformer and annular design SOFC models. Two types of internal reformer i.e. conventional packed-bed and catalytic coated-wall reformers were considered here. The simulations indicated that IIR-SOFC with packed-bed internal reformer leads to the rapid methane consumption and undesirable local cooling at the entrance of internal reformer due to the mismatch between thermal load associated with rapid reforming rate and local amount of heat available from electrochemical reactions. The simulation then revealed that IIR-SOFC with coated-wall internal reformer provides smoother methane conversion with significant lower local cooling at the entrance of internal reformer. 相似文献
3.
The feasibility of a direct internal reforming (DIR) solid oxide fuel cell (SOFC) running on wet palm‐biodiesel fuel (BDF) was demonstrated. Simultaneous production of H2‐rich syngas and electricity from BDF could be achieved. A power density of 0.32 W cm?2 was obtained at 0.4 A cm?2 and 800 °C under steam to carbon ratio of 3.5. Subsequent durability testing revealed that a DIR‐SOFC running on wet palm‐BDF exhibited a stable voltage of around 0.8 V at 0.2 A cm?2 for more than 1 month with a degradation rate of approximately 15 % / 1000 h. The main cause of the degradation was an increase in the ohmic resistance. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
More than three quarters of Canadian remote communities rely solely on diesel generators for electricity generation. The diesel dependency of remote communities has inflated local per capita greenhouse gas emissions and resulted in rising and inconsistent electricity prices that have made community viability reliant on government subsidies. As the diesel generators approach the end of their lifespan replacement, technologies must be considered that will help transition Canadian remote communities from diesel to renewables. Replacing diesel generators with steam reformer and solid oxide fuel cell systems would allow for more efficient diesel generation and would benefit the future implementation of renewable power. A model was generated in Honeywell's UniSim Design Suite to simulate the performance of a diesel fed steam reformer and solid oxide fuel cell system. System operating parameters in the model were optimized to minimize the expected payback period. The system model outputs were compared with expected diesel generator performance for a test case remote community. The test community demonstrated that replacing diesel generators with the proposed steam reformer and solid oxide fuel cell system would result in annual net efficiency improvements of 32%. The efficiency improvement could potentially translate to reductions in carbon dioxide equivalents of over 258 kt and 20‐year savings of over $450 million if all diesel‐reliant Canadian remote communities switched to steam reformer and solid oxide fuel cell systems. In addition to immediate environmental and economic savings, the improved low load performance of the reformer and fuel cell system would allow for the future integration of renewable energy to create highly efficient diesel‐renewable hybrid power plants. 相似文献
5.
A fully three-dimensional mathematical model of a planar solid oxide fuel cell (SOFC) with complete direct internal steam reforming was constructed to investigate the chemical and electrochemical characteristics of the porous-electrode-supported (PES)-SOFC developed by the Central Research Institute of Electric Power Industry of Japan. The effective kinetic models developed over the Ni/YSZ anode takes into account the heat transfer and species diffusion limitations in this porous anode. The models were used to simulate the methane steam reforming processes at the co- and counter-flow patterns. The results show that the flow patterns of gas and air have certain effects on cell performance. The cell at the counter-flow has a higher output voltage and output power density at the same operating conditions. At the counter-flow, however, a high hotspot temperature is observed in the anode with a non-fixed position, even when the air inlet flow rate is increased. This is disadvantageous to the cell. Both cell voltage and power density decrease with increased air flow rate. 相似文献
6.
Harvey H.F. Wang S.C. Chen S.Y. Yang G.T. Yeh M.H. Rei 《International Journal of Hydrogen Energy》2012
The effect of the heat transfer area and the thermal conductivity of the reactor materials are evaluated with three identical structured reactors having multiple columned-catalyst bed and using three different reactor materials, aluminum alloy, brass and stainless steel. A series of compact methanol reformers are then designed and fabricated with the use of large reactor surface area in catalyst beds and high heat transfer constant to produce hydrogen fuel with 2–4 ppm of CO for the fuel cell (FC) power generation. The same design principle is successfully used for easy scale up of the reactor capacity from 250 L/h to 10,000 L/h. This low CO hydrogen (68–70%) used as the fuel for the fuel cell power generation provides a very competitive cost of hydrogen and electric power, $0.20–0.23/m3 of H2 and $0.196/KWh, respectively. 相似文献
7.
Melanie Kuhn Teko Napporn Michel Meunier Daniel Therriault Srikar Vengallatore 《Journal of power sources》2008
Coplanar single-chamber micro solid oxide fuel cells (SC-μSOFCs) with curvilinear microelectrode configurations of arbitrarily complex two-dimensional geometry were fabricated by a direct-write microfabrication technique using conventional fuel cell materials. The electrochemical performance of two SC-μSOFCs with different electrode shapes, but comparable electrode and inter-electrode dimensions, was characterized in a methane–air mixture at 700 °C. Both cells exhibited stable open circuit voltage and peak power density of 0.9 V and 2.3 mW cm−2, respectively, indicating that electrode shape did not have a significant influence on the performance of these fuel cells. 相似文献
8.
This study presents a two-dimensional mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack which is based on the reforming reaction kinetics, electrochemical model and principles of mass and heat transfer. To stimulate the model and investigate the steady and dynamic performances of the DIR-SOFC stack, we employ a computational approach and several cases are used including standard conditions, and step changes in fuel flow rate, air flow rate and stack voltage. The temperature distribution, current density distribution, gas species molar fraction distributions and dynamic simulation for a cross-flow DIR-SOFC are presented and discussed. The results show that the dynamic responses are different at each point in the stack. The temperature gradients as well as the current density gradients are large in the stack, which should be considered when designing a stack. Further, a moderate increase in the fuel flow rate improves the performances of the stack. A decrease in the air flow rate can raise the stack temperature and increase fuel and oxygen utilizations. An increased output voltage reduces the current density and gas utilizations, resulting in a decrease in the temperature. 相似文献
9.
Jinwon Yun Kyungin Cho Young Duk Lee Sangseok Yu 《International Journal of Hydrogen Energy》2018,43(9):4546-4562
The methane steam reforming reaction is an extremely high endothermic reaction that needs a high temperature heat source. Various fuel cell hybrid systems have been developed to improve the thermal efficiency of the entire system. This paper presents a low temperature steam reformer for those hybrid systems to maximize the utilization of energy from a low temperature waste heat source. In this study, the steam reformer has a shell and tube configuration that is divided into the following zones: the inlet heat exchanging zone, the reforming zone and the exit heat exchanging zone. Four different configurations for methane steam reformers are developed to examine the effect of heat transfer on the methane conversion performance of the low temperature steam reformer. The experimental results show that the overall heat transfer area is a critical parameter in achieving a high methane conversion rate. When the heat transfer area increases about 30%, the results showed elevated dry mole fractions of hydrogen about 3% with about 30 °C rise of reformer outlet temperature. 相似文献
10.
In the present work a theoretical model of a solid oxide electrolyzer based on an electrolyte having both oxygen ion and proton conductivity is considered. The main parameters of the electrolytic process and an electrolyzer (distribution of gas components, electromotive forces and current densities along the electrolyzer channel, average values of electromotive forces and current densities) were calculated depending on a proton transport number and mode of the reactants’ feeding (co- and counter-flow). The performed analysis demonstrates considerable influence of the mode of feeding on all parameters of the electrolyzer: operation under the counter-flow mode is preferable as regards the specific characteristics and uniformity of their distribution along the electrolyzer. It is shown that the electrolyser's specific characteristics increase with the increase of the proton transport number. 相似文献
11.
Many studies have attempted to optimize integrated Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT), although different and somehow conflicting results are reported employing various algorithms. In this study, Multi-Objective Optimization (MOO) is employed to approach the optimal design of SOFC-GT considering all prevailing factors. The emphasis is placed on the evaluation of the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) performance as two effective approaches for solving the multi-objective and non-linear optimization problems. Multi- objective optimization is carried out on two vital objectives; the electrical efficiency and the overall output power of the system. The considerable achievements are the set of optimal points that aim to identify the system optimal performance which provides a practical basis for the decision-makers to choose the appropriate target functions. For the studied conditions, the two algorithms nearly exhibit similar performance, while the PSO is faster and more efficient in terms of computational effort. The PSO appears to achieve its ultimate parameter values in fewer generations compared to the GA algorithm under the examined circumstances. It is found that the maximum power of 410 kW is accomplished employing the GA optimization method with an efficiency of 64%, while PSO method yields the maximum power of 419.19 kW at the efficiency of 58.9%. The results stress that PSO offers more satisfactory convergence and fidelity of the solution for the SOFC-GT MOO problems. 相似文献
12.
固体氧化物燃料电池(SOFC)系统具有高能源效率和使用可再生燃料的可能性,将在未来的可持续能源系统中发挥重要作用。过去几年燃料电池的发展很快,但在成本、稳定性和市场份额方面,该技术仍处于早期发展阶段。在以天然气为燃料的SOFC系统中,燃料的重整过程和燃料利用水平都可能影响系统运行的稳定性、热量和能量平衡,从而影响系统的使用寿命、输出功率和效率。因此,对燃料重整过程的设计与控制对有效的SOFC电池运行具有重要意义。对天然气在SOFC系统中的重整器配置方式(包括外重整和内重整)、重整参数和重整燃料利用方式进行了详细的综述分析,并对未来天然气SOFC系统的发展进行了展望。 相似文献
13.
The aim of the paper is to investigate possible improvements in the geometry design of a monolithic solid oxide fuel cells (SOFCs) through analysis of the entropy generation terms. The different contributions to the local rate of entropy generation are calculated using a computational fluid dynamic (CFD) model of the fuel cell, accounting for energy transfer, fluid dynamics, current transfer, chemical reactions and electrochemistry. The fuel cell geometry is then modified to reduce the main sources of irreversibility and increase its efficiency. 相似文献
14.
Solid oxide fuel cell (SOFC) due to its high energy conversion rate and low noise can replace diesel energy as the submarine power. The interface thermal stress has an important effect on the stabilization and endurance of SOFC. The thermomechanical model of SOFC, which takes the interfacial layer into account, is developed to analyze the interfacial thermal stresses between electrodes and electrolyte in this paper. Based on the formation mechanism and composition distribution of the interfacial layer and the stress analysis of the half‐cell system, the material property of the interfacial layer is determined and the interfacial thermal stress is expressed accurately. The finite element model of SOFC is employed to investigate the interfacial thermal stress, and the simulated result agrees well with the theoretical result. The modified expressions of interfacial thermal stresses for numerical result are given to analyze the difference between theoretical and simulated results at the free edge of SOFC. The anode‐electrolyte interface needs to be concerned because its thermal stress level is higher and more likely to fail and partially delaminate compared with that of cathode‐electrolyte interface. In addition, the optimization scheme with respect to the interfacial layer thickness is obtained and the interfacial thermal stress decreases with the increase of the interfacial layer thickness. The research provides guidance for determining and minimizing the interfacial thermal stresses of SOFC. 相似文献
15.
16.
针对固体氧化物燃料电池(SOFC)与微型燃气轮机(MGT)构成的混合分布式供能系统,首先建立了一种管式SOFC准二维数值模型,优化了辐射计算,提高了热传递模型的准确性;考虑了CO及H2同时作为燃料参加电化学反应,并完善了损失计算模型;最后采用所发展的系统性能预测模型,分别在内部重整和外部重整情况下,预测比较了两种SOFC/MGT混合系统的性能,结果表明外部重整系统在系统输出功率、CO2排放以及热应力分布方面都比内部重整系统具有优势,然而这种轻微的优势是需要额外增加外部重整器的设备投资换取的。 相似文献
17.
Application of wavelet networks for identification of a direct internal reforming solid oxide fuel cell (DIR-SOFC) stack is reported in this paper. The SOFC is a complex system particularly when it is directly fueled with hydrocarbons (natural gas, coal gas, etc.). Most of the traditional models of the SOFC, based on the reforming, electrochemical and thermal modeling, are too complicated. To facilitate controller design and analysis of systems, the wavelet network dynamic model of the DIR-SOFC is constructed, avoiding the consideration of the complex processes in the fuel cells. The input and output data are used for initializing and training the wavelet network by a recursive approach. The Gram–Schmidt algorithm, the Cross-Validation method and immune selection principles are applied to optimization of the network. The simulation is performed and comparisons of characteristics under different operating conditions are given. The results show high static and dynamic accuracy of the identified model. Further, the obtained wavelet network model can be used for developing the model-based controllers of DIR-SOFC. 相似文献
18.
This paper presented a detailed survey of the catalysts for fuel reforming, including nickel‐based catalysts with alkalis, alkaline earths, rare earths, noble metals, and hydrotalcite‐type precursors. All these additions can enhance the Ni catalysts in regarding with activity, coke resistivity, and sintering resistivity. Smaller Ni particle size, more even particle dispersion, and less free NiO and NiAl2O4 can be obtained with these additions. Physicochemical characterization, activity, stability, coke resistance, and the effects of different precursors were summarized and compared. Development of the most commonly used monolithic reformer was also summarized, and different reformer configurations were presented chronologically. Homogeneous mixing of the completely evaporated fuel with air and steam, as well as uniform distribution of the mixture flow are the two main concerns in reformer design. Reforming energy conversion efficiency around 80%, power density above 3 kW/L, and specific power above 3 kW/kg are also reported in the most recent monolithic reformer. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
19.
Michihisa Koyama Steven Kraines Kanako Tanaka David Wallace Koichi Yamada Hiroshi Komiyama 《国际能源研究杂志》2004,28(1):13-30
New power generation technologies are expected to reduce various environmental impacts of providing electricity to urban regions for some investment cost. Determining which power generation technologies are most suitable for meeting the demand of a particular region requires analysis of tradeoffs between costs and environmental impacts. Models simulating different power generation technologies can help quantify these tradeoffs. An Internet‐based modelling infrastructure called DOME (distributed object‐based modelling environment) provides a flexible mechanism to create integrated models from independent simulation models for different power generation technologies. As new technologies appear, corresponding simulation models can readily be added to the integrated model. DOME was used to combine a simulation model for hybrid SOFC (solid oxide fuel cell) and gas turbine system with a power generation capacity and dispatch optimization model. The integrated models were used to evaluate the effectiveness of the system as a centralized power source for meeting the power demand in Japan. Evaluation results indicate that a hybrid system using micro‐tube SOFC may reduce CO2 emissions from power generation in Japan by about 50%. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
20.
P. Dokamaingam S. Assabumrungrat A. Soottitantawat N. Laosiripojana 《International Journal of Hydrogen Energy》2009
Mathematical models of an indirect internal reforming solid oxide fuel cells (IIR-SOFC) fueled by methanol were developed to analyze the thermal coupling of the internal endothermic steam reforming with exothermic electrochemical reactions and predict the system performance. The simulations indicated that IIR-SOFC fueled by methanol can be well performed as autothermal operation, although slight temperature gradient occurred at the entrance of the reformer chamber. Sensitivity analysis of five important parameters (i.e. operating voltage, reforming catalyst reactivity, inlet steam to carbon ratio, operating pressure and flow direction) was then performed. The increase of operating voltage lowered the average temperature along the reformer chamber and improved the electrical efficiency, but it oppositely reduced the average current density. Greater temperature profile along the system can be obtained by applying the catalyst with lower reforming reactivity; nevertheless, the current density and electrical efficiency slightly decreased. By using high inlet steam to carbon ratio, the cooling spot at the entrance of the reformer can be reduced but both current density and electrical efficiency were decreased. Lastly, with increasing operating pressure, the system efficiency increased and the temperature dropping at the reformer chamber was minimized. 相似文献