首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, cellulose fibers were modified by grafting with poly(lauryl acrylate) and poly(octadecyl acrylate). The grafted materials were prepared by polymerization of the corresponding monomers via surface initiated atom transfer radical polymerization, starting from cellulose papers previously modified with 2‐bromoisobutyryl groups. The polymerizations were carried out in the presence of ethyl‐2‐bromoisobutyrate, as a sacrificial initiator, added to control the molecular weight of the anchored segments, and polymerization kinetics. The grafting of both polymers was confirmed by infrared spectroscopy and elemental analysis. The effect of grafting these polymers on the thermal stability, morphology, and surface properties of cellulose fibers was studied using thermogravimetric analysis, scanning electron microscopy, and measuring water contact angle, respectively. The results reveal that grafting poly(lauryl acrylate) and poly(octadecyl acrylate) to cellulose confers the filter paper a hydrophobic character, and increases its affinity with pyrene, allowing the removal of this pollutant from water. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44482.  相似文献   

2.
To modify cellulose powder surface, the grafting of polymers with controlled molecular weight and narrow molecular weight distribution onto the surface by the termination of living polymer cation with amino groups introduced onto cellulose powder surface was investigated. The introduction of amino groups onto cellulose powder surface was achieved by the treatment of cellulose powder with isatoic anhydride. It was found that cellulose powder having amino groups are readily reacted with living poly(2‐methyl‐2‐oxazoline) (polyMeOZO) cation, which was generated by ring‐ opening polymerization with methyl p‐toluenesulfonate as an initiator, and polyMeOZO with controlled molecular weight and narrow molecular weight distribution was grafted onto the surface. By the termination of living poly(isobutyl vinyl ether) (polyIBVE), which was generated by the polymerization with HCl/ZnCl2 initiating system, with amino groups on cellulose powder, polyIBVE was also grafted onto the surface. The mole number of grafted polymer chain on cellulose powder surfaces decreased with increasing molecular weight of the living polymer cation, because of increasing steric hindrance with increasing molecular weight of living polymer cation. Wettability of cellulose powder surface to water was found to be controlled by grafting of hydrophilic or hydrophobic polymer onto the surface. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 515–522, 2000  相似文献   

3.
In this study, we used a UV radiation grafting method to modify the surface of the biomaterial polycarbonateurethane (PCU). Hydrophilic poly(ethylene glycol) monoacrylate (PEGMA; number‐average molecular weight = 526) as a macromolecular monomer was grafted onto the PCU surface by UV photopolymerization. The Fourier transform infrared and X‐ray photoelectron spectroscopy results of the graft‐modified PCU confirmed poly[poly(ethylene glycol) monoacrylate] block grafting onto the surface. We investigated the effects of the reaction temperature, macromolecular monomer concentration, UV irradiation time, and photoinitiator concentration on the grafting density (GD) in detail. Furthermore, we investigated the effects of GD under various process conditions on the water uptake and water contact angle. The modified materials had a high water uptake and low water contact angle, which indicated that the hydrophilicity of the PCU surface was improved significantly by the introduction of the hydrophilic poly(ethylene glycol) blocks on the surface. The anticoagulant properties of the material might also have been improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
To introduce an ultrahydrophobic polymeric phase onto a silicon wafer, an initiator‐modified silicon wafer was prepared with 2‐bromopropionyl bromide and then surface‐initiated atom transfer radical polymerization of octadecyl acrylate was carried out from the initiator‐grafted silicon wafer using CuBr and N,N,N′,N″‐pentamethyldiethylenetriamine as catalyst precursors. The resultant poly(octadecyl acrylate) [poly(ODA)] brushes were characterized by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle Fourier transform infrared spectroscopy, atomic force microscopy, gel permeation chromatography and water contact angle measurements. Wettability of the poly(ODA) brushes was found to depend on the surface coverage (Γ) and the root mean square roughness. The most hydrophobic surface (Γ = 25.35 mg m?2 and root mean square roughness 11.9 nm) exhibited a water contact angle of 171.1 ± 0.2°. Copyright © 2011 Society of Chemical Industry  相似文献   

5.
In this study, maleinized (SOMAP) and isocyanated soybean oil (SONCO) triglycerides have been successfully grafted onto one surface of poly(vinyl alcohol)(PVA) films to give films that are hydrophilic on one side and hydrophobic on the other. The surface grafting was accomplished by the reaction of succinic anhydride or isocyanate functionalities of soybean oil derivatives and the hydroxyl groups of PVA films. The reaction was run in toluene, using PVA films on glass slides so that only one side of the film was accessible. After grafting, the films were rinsed with hot toluene to remove ungrafted triglycerides from the surface. The reaction on the surface was confirmed by ATR‐FTIR and 1H‐NMR spectroscopic techniques. A series of films were prepared at different concentrations of SOMAP or SONCO in toluene. The increase in hydrophobicity with an increase in SOMAP or SONCO concentrations was observed by water contact angle measurements. The contact angles on the grafted side of the film reach their maximum value of 88° and 94° for 26 and 2.5% SOMAP and SONCO concentrations in toluene, respectively, while the ungrafted side gives contact angle of 48°. Surface morphologies of PVA‐g‐SOMAP and PVA‐g‐SONCO films were investigated by atomic force microscopy, whereas optical microscopy and staining was used to determine the homogeneity of the films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Self-polymerized dopamine was used to form a thin layer onto stainless steel (SS) and poly(ethylene terephthalate) (PET) sheets followed by covalent grafting of pentadecafluorooctanoyl chloride by esterification and amidation reactions. The surface functionalization was characterized at each step by contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The anti-adhesive properties of native surfaces, polydopamine-coated surfaces and hydrophobic fluorinated surfaces were tested against Gram-negative (Pseudomonas aeruginosa) and Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus). The results reveal an inhibition of bacteria growth towards Gram-negative bacteria on fluorinated surfaces. This work proposes a novel method to easily fluorinate in two steps both metallic and organic surfaces using “universal” polydopamine coating as a key step.  相似文献   

7.
The photoinitiated grafting of N‐vinylpyrrolidone (NVP) onto poly(lactic acid) (PLA) film with the use of benzophenone (BP) as the initiator, modified the natural hydrophobic PLA behavior to an hydrophilic film with desirable wettability. The surface photografting parameters‐percent conversion of monomer to overall photopolymerization (Cp), percent conversion of monomer to the photograft polymerization (Cg), and grafting efficiency (Eg) were calculated. The resulting film surface was analyzed using ATR‐FTIR and UV spectroscopy, derivative spectroscopy and water contact angle. Besides, we demonstrated that the grafted polyvinylpyrrolidone chains could easily react with iodine to form a complex as the homopolymer does with antibacterial activity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Stimuli‐responsive polymer materials (SRPs) have potential uses in drug delivery, tissue engineering, bioreactors, and cell‐surface adhesion control. Temperature‐responsive surfaces were fabricated by grafting poly(N‐isopropylacrylamide) (PNIPAM) onto nylon and polystyrene surfaces via a new procedure, i.e., He atmospheric plasma treatment followed by free radical graft copolymerization. The atmospheric plasma exhibits the activation capability to initiate graft copolymerization. The procedure is suitable for integration into a continuous manufacturing process. To reduce homopolymerization and enhance graft yield, Mohr's salt was added. The graft of PNIPAM was confirmed by Fourier transform infrared spectroscopy and atomic force microscopy. Dramatic water contact angle increase was found for PNIPAM‐grafted polymers at about 32°C, indicating the temperature sensitivity of the grafted surface, i.e., the change of surface from hydrophilic to hydrophobic when temperature increases above the lower critical solution temperature (LCST). The addition of Mohr's salt enhances the grafting reaction and the magnitude of temperature sensitivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3614–3621, 2007  相似文献   

9.
The photochemical grafting of 2-hydroxyethylmethacrylate onto low-density polyethylene film is described. The grafting technique employed involved irradiating a solution of 2-hydroxyethylmethacrylate and benzophenone in acetone spread between films of poly(ethylene terephthalate) or glass and low-density polyethylene. After irradiation for 2 min, the contact angle of the polyethylene films with water fell from 97° to about 50°. The contact angle of the poly(ethylene terephthalate) substrate also fell during grafting. X-ray photoelectron spectroscopy was consistent with the presence of poly(2-hydroxethylmethacrylate) at the surface of the polyethylene. The effect of solvent on the photochemical grafting of 2-hydroxyethylmethacrylate onto low-density polyethylene is discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Grafting of maleic anhydride (MAH) onto isotactic poly butene‐1 (iPB‐1) was carried out by thermal decomposition of dicumyl peroxide (DCP) using electron‐donating monomer styrene (St), and were carried out in the molten state in a twin‐screw extruder according to an experimental design in which the content of MAH and St were varied. The calibration curve was constructed from FTIR measurements and titration which can obtain the absolute amounts of grafted MAH according to FTIR data. The proposed mechanism was that when St is added to the iPB‐1/MAH/peroxide grafting system, St reacted first with MAH to form a charge‐transfer complex (CTC). Then CTC react (or copolymerize) with macroradicals. The grafting of MAH onto iPB‐1 (iPB‐1‐MAH) accelerated crystalline transformation rate of form II to I. The contact angle decreased with the increase of grafting degree, which indicated that surface polarity increased. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

11.
Homogeneous esterification of cellulose with saturated fatty acids (n-octanoic to n-octadecanoic) was accomplished with acetic anhydride co-reactant in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) medium. Cellulose mixed triesters (CMT) were obtained after 5 h at 130°C with an average of 2.2 acetyl groups and 0.8 fatty substituents per anhydroglucose unit. A mixed acetic-fatty anhydride, formed in situ, accounts for the grafting of the fatty moiety. The purified products were characterized and compared to the analogous cellulose simple fatty triesters (CST) that were synthesized from fatty acid chlorides in pyridine medium. Dynamic contact angle with water, glass transition, and storage moduli were correlated with the length of the fatty substituents. The CMT proved to be highly hydrophobic and more mechanically resistant than the CST.  相似文献   

12.
Controlled grafting of well‐defined polymer brushes on the poly(vinylidene fluoride) (PVDF) films was carried out by the surface‐initiated atom transfer radical polymerization (ATRP). Surface‐initiators were immobilized on the PVDF films by surface hydroxylation and esterification of the hydroxyl groups covalently linked to the surface with 2‐bromoisobutyrate bromide. Homopolymer brushes of methyl methacrylate (MMA) and poly(ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the α‐bromoester‐functionalized PVDF surface. The chemical composition of the graft‐functionalized PVDF surfaces was characterized by X‐ray photoelectron spectroscopy (XPS) and attenuated total reflectance (ATR)–FTIR spectroscopy. Kinetics study revealed a linear increase in the graft concentration of PMMA and PEGMA with the reaction time, indicating that the chain growth from the surface was consistent with a “controlled” or “living” process. The “living” chain ends were used as the macroinitiator for the synthesis of diblock copolymer brushes. Water contact angles on PVDF films were reduced by surface grafting of PEGMA and MMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3704–3712, 2006  相似文献   

13.
1,6‐Hexanediol diacrylate (HDDA) was grafted onto polypropylene (PP) substrates in the presence of benzophenone (BP) and isopropylthioxanthone (ITX) photoinitiators, and then polyurethane acrylate formulations were coated onto the HDDA‐g‐PP substrates, using UV radiation. The amount grafted and the grafting efficiency of the polymerizations were determined gravimetrically. The effects of the photoinitiator concentration and the UV radiation intensity on the physicochemical surface properties and the grafting efficiency of the UV‐radiation grafting polymerizations were characterized in detail using contact‐angle measurements, Fourier transform infrared spectroscopy with attenuated total internal reflection, and scanning electron microscopy. The results showed that the amount grafted and the surface polarity of the HDDA‐g‐PP substrates both increased linearly with increasing BP photoinitiator concentration and UV radiation intensity, and that the addition of a small amount of ITX markedly enhanced both parameters, probably due to photosensitization. The adhesion of the UV‐cured coating onto the HDDA‐g‐PP substrates was evaluated using the crosshatch adhesion test. The results indicated that the amount of HDDA grafted onto the PP substrates should exceed about 1 mmol/cm2 for satisfactory adhesion with the UV‐cured coating. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1446–1461, 2006  相似文献   

14.
The graft copolymerization of methyl methacrylate (MMA) onto high α‐cellulose was carried out homogeneously in an N,N‐dimethyl acetamide/lithium chloride solvent system by using benzoyl peroxide as radical initiator. The rate of grafting was evaluated as a function of concentrations of initiator and monomer, reaction time, and temperature. The grafted products were characterized with the help of infrared spectroscopy, whereas the thermal decomposition of optimum PMMA‐grafted high α‐cellulose was studied using TGA, DTG, and DTA techniques at two heating rates, 10 and 20°C/min, in nitrogen atmosphere in the range of room temperature to 650°C. Three major decomposition steps were identified and the relative thermal stabilities of the PMMA‐grafted high α‐cellulose products were assessed. The kinetic parameters for the three decomposition steps were estimated with the help of two well‐known methods. The thermal stability of the grafted products decreased with the increase of graft yield (GY). Crystallinity or peak intensity of wide‐angle X‐ray diffraction patterns decreased with the increase of GY. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3471–3478, 2004  相似文献   

15.
Surface graft polymerization of a hydrophobic monomer, 2,2,3,3,3-pentafluoropropyl methacrylate (5FMA), onto hydrophilic poly(vinyl alcohol) (PVA) and cellulose films was studied after corona discharge of the films. It was found that grafting strongly depended on the reaction medium; especially, addition of alcohol to the monomer greatly accelerated graft polymerization. For instance, when an ethanol/ water /5FMA mixture (65/25/10, by volume) was used as the polymerization medium. the PVA and cellulose films corona-discharged for a few minutes exhibited a high contact angle up to 100° after 30 min polymerization, the graft density being approximately 170 μg/cm2 for cellulose and 80 μg/cm2 for PVA. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Fluorescent cellulose nanocrystals (CNCs) were prepared through a two‐step approach. Reactive amino groups were first introduced onto the CNCs through a silanization reaction with 3‐aminopropyltrimethoxysilane. The fluorescent moieties were then attached onto the cellulose by covalent grafting between the amino groups and 1‐pyrenebutyric acid N‐hydroxy succinimide ester or fluorescein isothiocyanate. The synthesized fluorescent CNCs were investigated and characterized with attenuated total reflectance Fourier transform infrared spectroscopy, ultraviolet–visible absorbance and fluorescence spectroscopy, confocal microscopy, and dynamic light scattering. The same fluorescent functionalization strategy could also be applied to other cellulose materials, such as microcrystalline cellulose and bulky paper sheets. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
We modified hydrophobic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBHV) films with hydrophilic chains to control their surface properties. We designed and investigated surface‐initiated atom transfer radical polymerization (SI‐ATRP) to modify the PHBHV films by grafting poly(2‐hydroxyethyl methacrylate) (PHEMA) from the surface. This method consisted of two steps. In the first step, amino functions were formed on the surface by aminolysis; this was followed by the immobilization of an atom transfer radical polymerization initiator, 2‐bromoisobutyryl bromide. In the second step, the PHEMA chains were grafted to the substrate by a polymerization process initiated by the surface‐bound initiator. The SI‐ATRP technique was expected to favor a polymerization process with a controlled manner. The experimental results demonstrate that the grafting density was controlled by the reaction conditions in the first step. The grafted films were analyzed by Fourier transform infrared spectroscopy, contact angle testing, scanning electron microscopy, and energy‐dispersive X‐ray spectroscopy. The results show that grafted chains under the SI‐ATRP method were preferentially located on the surface for surface grafting and in the bulk for conventional free‐radical polymerization initiated by benzoyl peroxide. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
A hierarchical reinforcement, which was used to improve the interfacial properties of bismaleimide (BMI) composites, was prepared by grafting functionalized graphene oxide (GO) onto a carbon fiber surface. The GO and carbon fibers were first functionalized separately to create interactional functional groups on their surfaces. The grafting process was then realized by an amidation reaction of the amine and acyl chloride function groups formed on GO and carbon fibers, respectively. The surface groups of functionalized GO and carbon fibers were identified by an X‐ray photoelectron spectroscopy (XPS). The resulting reinforcement was further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle analysis. Experimental results showed that the functionalized GO were successfully grafted onto the carbon fibers surfaces and significantly increased the surface energy of carbon fibers. The study also indicated that the prepared hierarchical reinforcement could significantly improve the interfacial adhesion of resulting BMI composite. POLYM. ENG. SCI., 58:886–893, 2018. © 2017 Society of Plastics Engineers  相似文献   

19.
A surface functionalization polypropylene was prepared by entrapment a copolymer of polypropylene‐grafted‐poly(ethylene glycol) into polypropylene. The effects of structure of copolymer, contact dies, and content of modifiers were studied. The results of attenuated total reflection infrared spectroscopy(ATR‐FTIR) and contact angle measurements indicated that PP‐g‐PEG could preferably diffuse onto the surface and effectively increase the hydrophilicity of PP. PPw‐g‐PEG with lower PEG contents, lower molecular weight of PPw and PEG had better selective enrichment on the surface of PP blend film. By grafting of PEG‐OH onto the MPP, PP macromolecular surface modifier with better solvent‐resistance than that of PEG can be achieved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The preirradiation grafting of acrylic acid (AA) onto poly(ethylene terephthalate) (PET) had been found to affect the thermal and physical characteristics of fabric. The grafted fabrics with various graft levels were characterized by thermal gravimetric analysis (TGA), ATR‐FTIR spectroscopy, contact angle, differential scanning calorimetry (DSC), X‐ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The initial decomposition temperature and T50 were increased with the increase in degree of grafting. The percentage crystallinity was decreased as the degree of grafting increases. The detailed elemental analysis was done by X‐ray photoelectron spectroscopy (XPS). The atomic ratio (O1s/C1s) was found to increase significantly with increasing the degree of grafting and reached 0.64 at 14.5% grafting from 0.38 for virgin PET. The surface topography and morphology was strongly influenced as the degree of grafting was increased. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号