首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high‐order curvature‐corrected complementary metal–oxide–semiconductor (CMOS) bandgap voltage reference (BGR), utilizing the temperature‐dependent resistor and constant current technique, is presented. Considering the process variation, a resistor trimming network is introduced in this work. The circuit is implemented in a standard 0.35‐µm CMOS process. The measurement results have confirmed that the proposed BGR operates with a supply voltage of 1.8 V, consuming 45 μW at room temperature (25 °C), and the temperature coefficient of the output voltage reference is about 5.5 ppm/°C from −40 °C to 125 °C. The measured power supply rejection ratio is −38.8 dB at 1 kHz. The BGR is compatible with low‐voltage and low‐power circuit design when the structure of operational amplifiers and all the devices in the proposed bandgap reference are properly designed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
We present the design of a nanopower sub‐threshold CMOS voltage reference and the measurements performed over a set of more than 70 samples fabricated in 0.18 µm CMOS technology. The circuit provides a temperature‐compensated reference voltage of 259 mV with an extremely low line sensitivity of only 0.065% at the price of a less effective temperature compensation. The voltage reference properly works with a supply voltage down to 0.6 V and with a power dissipation of only 22.3 nW. Very similar performance has been obtained with and without the inclusion of the start‐up circuit. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
An integrated sub‐1V voltage reference generator, designed in standard 90‐nm CMOS technology, is presented in this paper. The proposed voltage reference circuit consists of a conventional bandgap core based on the use of p‐n‐p substrate vertical bipolar devices and a voltage‐to‐current converter. The former produces a current with a positive temperature coefficient (TC), whereas the latter translates the emitter‐base voltage of the core p‐n‐p bipolar device to a current with a negative TC. The circuit includes two operational amplifiers with a rail‐to‐rail output stage for enabling stable and robust operation overall process and supply voltage variations while it employs a total resistance of less than 600 K Ω. Detailed analysis is presented to demonstrate that the proposed circuit technique enables die area reduction. The presented voltage reference generator exhibits a PSRR of 52.78 dB and a TC of 23.66ppm/°C in the range of ? 40 and 125°C at the typical corner case at 1 V. The output reference voltage of 510 mV achieves a total absolute variation of ± 3.3% overall process and supply voltage variations and a total standard deviation, σ, of 4.5 mV, respectively, in the temperature range of ? 36 and 125°C. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a sub‐1 V CMOS bandgap voltage reference that accounts for the presence of direct tunneling‐induced gate current. This current increases exponentially with decreasing oxide thickness and is especially prevalent in traditional (non‐high‐κ/metal gate) ultra‐thin oxide CMOS technologies (tox < 3 nm), where it invalidates the simplifying design assumption of infinite gate resistance. The developed reference (average temperature coefficient, TC_AVG, of 22.5 ppm/°C) overcomes direct tunneling by employing circuit techniques that minimize, balance, and cancel its effects. It is compared to a thick‐oxide voltage reference (TC_AVG = 14.0 ppm/°C) as a means of demonstrating that ultra‐thin oxide MOSFETs can achieve performance similar to that of more expensive thick(er) oxide MOSFETs and that they can be used to design the analog component of a mixed‐signal system. The reference was investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
High‐κ gate‐all‐around structure counters the Short Channel Effect (SCEs) mostly providing excellent off‐state performance, whereas high mobility III–V channel ensures better on‐state performance, rendering III–V nanowire GAAFET a potential candidate for replacing the current FinFETs in microchips. In this paper, a 2D simulator for the III–V GAAFET based on self‐consistent solution of Schrodinger–Poisson equation is proposed. Using this simulator, capacitance–voltage profile and threshold voltage are characterized, which reveal that gate dielectric constant (κ) and oxide thickness do not affect threshold voltage significantly at lower channel doping. Moreover, change in alloy composition of InxGa1‐xAs, channel doping, and cross‐sectional area has trivial effects on the inversion capacitance although threshold voltage can be shifted by the former two. Although, channel material also affects the threshold voltage, most sharp change in threshold voltage is observed with change in fin width of the channel (0.005 V/nm for above 10 nm fin width and 0.064 V/nm for sub‐10 nm fin width). Simulation suggests that for lower channel doping below 1023 m−3, fin width variation affects the threshold voltage most. Whereas when the doping is higher than 1023 m−3, both the thickness and dielectric constant of the oxide material have strong effects on threshold voltage (0.05 V/nm oxide thickness and 0.01 V/per unit change in κ). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A low‐power voltage regulator for passive RFID tag ICs is proposed in this paper. It consists of a self‐biased mutually compensated voltage reference, a low dropout (LDO) voltage regulation circuit and a power‐on‐reset (POR) circuit. It is fabricated in a commercial 0.18?µm CMOS technology and applied to a passive UHF RFID tag IC. The total quiescent current is 700 nA under a 1.8‐V supply. The output voltage of the regulator is 1.45 V with load capability of 50 µA. The temperature coefficients of the voltage reference and the output voltage are only 9 and 43 ppm/°C, respectively. A POR signal with width pulse of 150 ns is generated for the digital part in the tag IC. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A new 0.5‐V fully differential amplifier is proposed in this article. The structure incorporates a differential bulk‐driven voltage follower with conventional gate‐driven amplification stages. The bulk‐driven voltage follower presents differential gain equal to unity while suppressing the input common‐mode voltage. The amplifier operates at a supply voltage of less than 0.5 V, performing input transconductance almost equal to a gate transconductance and relatively high voltage gain without the need for gain boosting. The circuit was designed and simulated using a standard 0.18‐µm CMOS n‐well process. The low‐frequency gain of the amplifier was 56 dB, the unity gain bandwidth was approximately 3.2 MHz, the spot noise was 100 nV/√Hz at 100 kHz and the current consumption was 90 μΑ. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A continuous‐time complementary metal–oxide–semiconductor differential pair that does not require the traditional tail current source as a way to control the direct current and common‐mode current is presented. Compared with a p‐channel long‐tailed pair, the proposed non‐tailed solution operates under a higher maximum input common‐mode voltage that includes (VDD + VSS)/2 even under low supply voltages. Experimental measurements on a prototype fabricated in a 0.35‐µm technology (with metal – oxide – semiconductor thresholds greater than 0.6 V) confirm this behavior for supply voltages as low as 1.2 V, whereas the long‐tailed pair with the same technology offers the same capability only for supplies higher than 1.6 V. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports a novel high‐compliance, very accurate and ultra‐high output resistance current mirror. These features are achieved by employing a combination of negative and positive feedbacks in the proposed circuit. This makes the proposed current mirror unique in gathering ultra‐high output resistance, high compliance, and high accuracy ever demanded merits. The principle of operation of this structure is discussed, its main formulas are derived and its outstanding performance is verified by Cadence post‐layout simulations. Designed in the IBM 130‐nm standard CMOS process, the circuit consumes 230 × 110 µm2 of silicon area. Post‐layout simulation results indicate that with a 3.3‐V power supply, output voltage compliance of 0.93VSupply is achieved at a maximum output current of 96 μA. Moreover, an extremely ultra‐high output resistance of 320 GΩ is achieved, which is one of the highest reported values of output resistance for current mirrors implemented using regular CMOS technology. The ?3 dB upper cut‐off frequency of the proposed circuit is 100 MHz and the output/input current transfer error is 0.1%. The whole circuit, including bias circuitry, consumes 0.57 mW when delivering 96 μA to the load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A low‐voltage, low‐power, low‐area, wide‐temperature‐range CMOS voltage reference is presented. The proposed reference circuit achieves a measured temperature drift of 15 ppm/°C for an extremely wide temperature range of 190 °C (?60 to 130 °C) while consuming only 4 μW at 0.75 V. It performs a high‐order curvature correction of the reference voltage while consisting of only CMOS transistors operating in subthreshold and polysilicon resistors, without utilizing any diodes or external components such as compensating capacitors. A trade‐off of this circuit topology, in its current form, is the high line sensitivity. The design was fabricated using TowerJazz semiconductor's 0.18‐µm standard CMOS technology and occupies an area of 0.039 mm2. The proposed reference circuit is suitable for high‐precision, low‐energy‐budget applications, such as mobile systems, wearable electronics, and energy harvesting systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A new solution for an ultra low voltage bulk‐driven programmable gain amplifier (PGA) is described in the paper. While implemented in a standard n‐well 0.18‐µm complementary metal–oxide–semiconductor (CMOS) process, the circuit operates from 0.3 V supply, and its voltage gain can be regulated from 0 to 18 dB with 6‐dB steps. At minimum gain, the PGA offers nearly rail‐to‐rail input/output swing and the input referred thermal noise of 2.37 μV/Hz1/2, which results in a 63‐dB dynamic range (DR). Besides, the total power consumption is 96 nW, the signal bandwidth is 2.95 kHz at 5‐pF load capacitance and the third‐order input intercept point (IIP3) is 1.62 V. The circuit performance was simulated with LTspice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A voltage reference consisting of only two nMOS transistors with different threshold voltages is presented. Measurements performed on 23 samples from a single batch show a mean reference voltage of 275.4 mV. The subthreshold conduction and the low number of transistors enable to achieve a mean power consumption of only 40 pW. The minimum supply voltage is 0.45 V, which coincides with the lowest value reported so far. The mean TC in the temperature range from 0 to 120 °C is 105.4 ppm/°C, while the mean line sensitivity is 0.46%/V in the supply voltage range 0.45–1.8 V. The occupied area is 0.018 mm2. The power supply rejection rate without any filtering capacitor is ?48 dB at 20 Hz and ?29.2 dB at 10 kHz. Thanks to large area transistors and to a careful layout, the coefficient of variation of the reference voltage is only 0.62%. We introduce as a new figure of merit, the voltage temperature parameter (VTP), which gives a direct measure of the overall percentage variation of the reference voltage on the typical 2D domain of supply voltage and temperature. For the proposed circuit, the average VTP is 1.70% with a standard deviation of 0.21%. In order to investigate the effect of transistor area on process variability, a 4X replica of the proposed configuration has been fabricated and tested as well. Except for LS, the 4X replica doesn't exhibit any appreciable improvement with respect to the basic voltage reference. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposed simple and accurate threshold voltage (V TH ) extraction techniques, which can be directly adaptable to various semiconductor technologies ranging from deep sub‐micron complementary metal–oxide–semiconductor to large‐area thin‐film transistor devices. These techniques are developed using multiple circuits, namely, a dynamic source follower, an inverter with a diode‐connected load and a current mirror topology, which allow a direct determination of V TH . As the proposed techniques are experimented with large‐area emerging technologies, which have a stable single type (n‐type) transistor, all the designs employed in this work are confined to only n‐type transistors for a fair comparison. The semiconductor technologies under consideration are standard complementary metal–oxide–semiconductor (65 and 130 nm) and oxide (indium–gallium–zinc–oxide and zinc–tin–oxide) thin‐film transistors. In order to validate the accuracy of the proposed techniques, extracted V TH from these methods are compared against the value from linear transfer characteristics. The resulting relative error is within 5%, reinforcing proposed techniques suitability to different semiconductor technologies ranging from deep sub‐micron to large‐area transistors. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
A new tunable current‐mode (CM) biquadratic filter with three inputs and three outputs using three dual‐output inverting second‐generation current conveyors, three grounded resistors and two grounded capacitors is proposed. The proposed circuit exhibits low‐input impedance and high‐output impedance which is important for easy cascading in the CM operations. It can realize lowpass, bandpass, highpass, bandreject and allpass biquadratic filtering responses from the same topology. The circuit permits orthogonal controllability of the quality factor Q and resonance angular frequency ωo, and no component matching conditions or inverting‐type input current signals are imposed. All the passive and active sensitivities are low. Hspice simulation results are based on using TSMC 0.18 µm 1P6M process complementary metal oxide semiconductor technology and supply voltages ±0.9 V to verify the theoretical analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
An amplifier‐offset‐insensitive complementary metal‐oxide‐semiconductor (MOS) voltage reference (CVR) circuit with high power supply ripple rejection (PSRR) is presented. Due to the novel structure of employing subthreshold MOS transistors, the proposed CVR circuit can suppress the direct current offset effects of the internal amplifier. Design considerations in optimizing the power and area consumptions and improving the PSRR are presented. The proposed CVR circuit is implemented in a standard 0.18 μm complementary MOS process. Measured results show that the reference can run with down‐to 0.9 V supply voltage, while the power consumption is only 70 nW. The measured PSRR is better than ?37 dB over the full frequency range.  相似文献   

16.
A low‐power low‐jitter voltage‐mode (VM) transmitter with two‐tap pre‐emphasis and impedance calibration for high‐speed serial links is presented. Based on a comprehensive analysis of the relationship between impedance, supply current, and pre‐emphasis of the output driver, an impedance control circuit (ICU) is presented to maintain the 50 Ω output impedance and suppress the reflection, a self‐biased regulator is proposed to regulate the power supply, and an edge driver is introduced to speed up the signal transition time. Therefore, the signal integrity (SI) of the transmitter is improved with low power consumption. The whole transmitter is implemented in 65‐nm CMOS technology. It provides an eye height greater than 688 mV at the far end with a root‐mean‐squared jitter of less than 6.99 ps at 5 Gbps. The transmitter consumes 15.2 mA and occupies only 370 μm × 230 μm. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

17.
An improved active‐diode circuit, which makes use of positive feedback to achieve fast on/off transition, is presented in this paper. The proposed active‐diode circuit can be embedded into a voltage doubler to replace the commonly used dead‐time circuit and to eliminate reverse current. In addition, the relationship between oscillation frequency, boosting and output capacitances, load‐ and on‐resistances of the power switch and the output voltage is analysed, to investigate a methodology to retain high voltage gain of a voltage doubler. The proposed active‐diode circuit is applied to a voltage doubler implemented in a commercial 0.35‐µm process with threshold voltage of about 0.68 V. The input voltage, maximum output current and oscillation frequency of the voltage doubler are 1 V, 1 mA and 0.4 MHz, respectively. Moreover, the used boosting and output capacitances are 22 nF. The highest power efficiency achieved is 83% at a load current of 0.47 mA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
This work proposes a new class of current references based on only 3 transistors that allows sub‐0.5 V operation. The circuit consists of a 2‐transistor block that generates a proportional‐to‐absolute‐temperature or a complementary‐to‐absolute‐temperature voltage and a load transistor. The idea of a 3T current reference is validated by circuit simulations for different complementary metal‐oxide‐semiconductor technologies and by experimental measurements on a large set of test chips fabricated with a commercial 0.18 μm complementary metal‐oxide‐semiconductor process. As compared to the state‐of‐art competitors, the 3T current reference exhibits competitive performance in terms of temperature coefficient (578 ppm/°C), line sensitivity (3.9%/V), and power consumption (213 nW) and presents a reduction by a factor of 2 to 3 in terms of minimum operating voltage (0.45 V) and an improvement of 1 to 2 orders of magnitude in terms of area occupation (750 μm2). In spite of the extremely reduced silicon area, the fabricated chips exhibit low‐process sensitivity (2.7%). A digital trimming solution to significantly reduce the process sensitivity is also presented and validated by simulations.  相似文献   

19.
This paper presents a new current‐mode CMOS loser‐take‐all circuit. The proposed circuit consists of a basic cell that allows implementation of a multi‐input configuration by repeating the cell for each additional input. A high‐speed feedback structure is employed to determine the minimum current among the applied inputs. The significant feature of the circuit is its high accuracy and high‐speed operation. Additionally, the input dynamic range of the circuit can be efficiently controlled via the biasing current. HSPICE simulation results are presented to verify the performance of the circuit, where under a supply voltage of 2.5 V, bias current of 100 µA, and frequency of 10 MHz, the input dynamic range increases within 0–100 µA and the corresponding error remains as low as 0.4%. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

20.
A design procedure for high‐order continuous‐time intermediate‐frequency band‐pass filters based on the cascade of low‐Q biquadratic cells is presented. The approach is well suited for integrated‐circuit fabrication, as it takes into account the maximum capacitance spread dictated by the available technology and maximum acceptable sensitivity to component variations. A trade‐off between noise and maximum linear range is also met. A novel, wide‐tuning‐range transconductor topology is also described. Based on these results, a 10‐pole band‐pass filter for a code division multiple‐access satellite receiver has been designed and tested. The filter provides tunable center frequency (f0) from 10 to 70 MHz and exhibits a 28‐MHz bandwidth around f0 = 70 MHz with more than 39‐dB attenuation at f0/2 and 2f0. Third‐order harmonic rejection is higher than 60 dB for a 1‐Vpp 70‐MHz input, and equivalent output noise is lower than 1 mVrms. The circuit is fabricated in a 0.25‐µm complementary metal oxide semiconductor process, and the core consumes 12 mA from a 2.5‐V supply, offering the best current/pole ratio figure. The die area resulted to be 0.9 × 1.1 mm2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号