首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobic polyvinylidene fluoride (PVDF) hollow fibre composite membranes were prepared by the dilute solution coating process to build a special surface structure that was similar to the dual micro‐nano structure on the lotus leaf. Poly(vinylidene fluoride‐co‐hexafluoropropene) was chosen as the hydrophobic polymer candidate in dilute solution. Membrane morphology and surface hydrophobicity were evaluated by scanning electron microscopy and dynamic water contact angle measurement. The prepared PVDF hollow fibre membranes were employed to separate dyes (Congo Red and Methylene Blue) from water by vacuum membrane distillation. The effects of operational conditions (feed temperature, vacuum pressure and feed flow rate) on the vacuum membrane distillation performance of different PVDF membranes were investigated. The results indicated that the water contact angle values of PVDF composite membrane surfaces improved from 93.6° to 130.8°, which was mainly attributed to the formation of micro‐nano rods. This structure was similar to the dual micro‐nano structure on the lotus leaf. Under test feed temperature, vacuum pressure and feed flow rate conditions, the dye rejection rate of Congo Red and Methylene Blue by the hydrophobic PVDF hollow fibre membrane remained above 99.5% and 99%, which was higher than that of the pristine PVDF membrane (99% and 98%, respectively). In addition, the hydrophobic PVDF hollow fibre composite membrane showed higher permeation flux under different conditions compared with the pristine PVDF membrane, which was attributed to membrane surface hydrophobicity and the electrostatic interactions between dyes and the PVDF membrane surface.  相似文献   

2.
Superhydrophobic nanocomposite fiber membranes were prepared by blend electrospinning of poly(vinylidene fluoride) (PVDF) mixed with silane coupling agent modified SiO2 nanoparticles. The nanoparticles were prepared by the sol–gel method, and the average particle diameter was measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The effects of the type of silane coupling agent, such as n‐octyltriethoxysilane, vinyltrimethoxysilane (A‐171), and vinyltriethoxysilane (A‐151), and the mass ratio of the modified silica particles and PVDF on the surface wettability of the composite fiber membrane were investigated. The results indicated that the incorporation of silane coupling agent modified silica particles into the PVDF membrane increased the roughness of the surface and formed micro/nano dual‐scale structure compared to the pristine PVDF membrane, which was responsible for the superhydrophobicity and self‐cleaning property of the nanocomposite fiber membranes. The value of water contact angle (CA) increased with the increase of the content of modified SiO2 nanoparticles in the nanocomposite membrane, ranging from 149.8° to 160.1° as the mass ratio of modified 170 nm SiO2 with PVDF matrix increased from 0.5:1 to 5:1, indicating the membrane possesses a superhydrophobic surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44501.  相似文献   

3.
In this article, N‐Methylol dimethylphosphonopropionamide (FR) in combination with a melamine resin (CL), phosphoric acid (PA) catalyst and zinc oxide (ZnO) or nano‐ZnO co‐catalyst were used (FR‐CL‐PA‐ZnO or nano‐ZnO system) to impart flame‐retardant property on cotton fabrics. FR‐CL or FR‐CL‐PA‐treated cotton specimen showed roughened and wrinkled fabric surface morphology, which was caused by the attack of the FR with slightly acidity. In addition, FTIR analysis showed some new characteristic peaks, carbonyl, CH2 rocking and CH3 asymmetric and CH2 symmetric stretching bands, in the chemical structure of treated cotton specimens. Apart from these, the flame ignited on the flame‐retardant‐treated fabrics (without subjected to any post‐wet treatment) extinguished right after the removal of ignition source. However, FR‐CL treated specimens were no longer flame‐resistant when the specimens subjected to neutralization and/or home laundering, while FR‐CL‐PA treated specimens showed opposite results. By using 0.2% and 0.4% of ZnO or nano‐ZnO as co‐catalyst, the flame spread rate of neutralized and/or laundered test specimens decreased, even the specimens were undergone 10 home laundering cycles. Moreover, flame‐retardant‐treated cotton specimens had low breaking load and tearing strength resulting from side effects of the crosslinking agent used, while addition of ZnO or nano‐ZnO co‐catalyst could compensates for the reduction. Furthermore, the free formaldehyde content was dropped when ZnO and nano‐ZnO co‐catalyst was added in the treatment. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Membrane distillation water desalination can attain a significantly higher water recovery than reverse osmosis, while the lack of stable hydrophobic membranes limits its commercial applications. This article presents the preparation of a new hydrophobic membrane by modifying a porous Si3N4 substrate with vesicular SiNCO nano‐particles. The membrane had a water contact angle of 142°, due to the presence of –Si–CH3 terminal groups and the high surface roughness. The contact angle remained nearly the same after exposures of the membrane to boiling water, aqueous solutions with pH ranging from 2 to 12, and benzene. The membrane exhibited satisfactory water desalination performance on highly concentrated NaCl solutions and simulated seawater. With the highly stable membrane, it is promising to develop a zero‐discharge water desalination process for simultaneous production of fresh water for daily uses and brine for industrial uses. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1272–1277, 2017  相似文献   

5.
The performance of active polymer substrates used in sensor and actuator or tactile display applications can be hindered by the inevitable soiling of their surface. A possible approach to overcome this problem is to deposit a self‐cleaning coating onto the polymer surface, taking care that the layer underneath withholds its intrinsic properties. In this work, titanium dioxide, TiO2, was naturally chosen for coating material due to its inherent photocatalytic properties. Thus, TiO2 thin films were deposited by reactive magnetron sputtering on poly(vinilydene fluoride) ‐ (PVDF) substrates, in its α‐ (nonelectroactive) and β‐ (electroactive) phases. Wide angle x‐ray scattering (WAXS) experiments in a synchrotron were performed to monitor the crystalline structure of the polymer substrates upon thin film deposition and also to assess the crystalline structure of the TiO2 coating at different temperatures. In the WAXS patterns of the coated α‐PVDF, the TiO2 polymorph anatase phase can be distinguished. At the same time, no explicit diffraction peaks for anatase were detected in the coated β‐PVDF. Fourier transform infrared spectroscopy evidenced that the chemical structure of PVDF is unaffected by the coating deposition process. These structural results have been correlated with the photocatalytic properties of the TiO2 coatings. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A novel lotus‐leaf‐inspired superhydrophobic poly(lactic acid) (PLA) porous membrane was fabricated for oil‐water separation based on fused deposition modeling three‐dimensional printing and subsequent chemical etching and the decoration of polystyrene nanospheres. A superhydrophobic PLA fractal surface with a water contact angle of 151.7° and low water adhesion force of 21.8 μN was achieved. The membrane pore size could be easily adjusted from 40 to 600 μm via a computer‐aided design program to optimize separation performance. The maximal oil‐water separation efficiency of 99.4% was achieved with a pore size of 250 μm, which also exhibited a high flux of 60 kL m?2 h?1. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3700–3708, 2018  相似文献   

7.
We have grown hierarchical structure of bismuth oxycloride (BiOCl) on SrO‐Bi2O3‐B2O3 (SBBO) transparent glass‐ceramic. SBBO glass‐ceramics were fabricated via conventional melt‐quenching technique while BiOCl was grown by etching the glass via HCl. Enhanced visible light driven photocatalytic activity and increasing hydrophobic feature were observed on BiOCl grown SBBO than as‐quenched SBBO glass‐ceramics. Contact angle analysis showed maximum contact angle of 130.7° on the surface of most BiOCl grown SBBO glass‐ceramic. Furthermore, under visible light illumination water contact angle decreased from 130.7° to 30.8°. Such photo‐induced hydrophilicity and catalytic performance in translucent glass‐ceramics lead self‐cleaning applications.  相似文献   

8.
The nano‐ZnO and nano‐TiO2 were added into chitosan (CS) anion layer to prepare polyvinyl alcohol (PVA) ‐ sodium alginate (SA)/ TiO2‐ZnO‐CS (here, PVA:polyvinyl alcohol; SA:sodium alginate) bipolar membrane (BPM), which was characterized using scanning electron microscopy, atomic force microscopy (AFM), thermogravimetric analysis (TG), electric universal testing machine, contact angle measurer, and so on. Experimental results showed that nano‐TiO2‐ZnO exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano‐TiO2 or nano‐ZnO. The membrane impedance and voltage drop (IR drop) of the BPM were obviously decreased under the irradiation of high‐pressure mercury lamps. At a current density of 60 mA/cm2, the cell voltage of PVA‐SA/TiO2‐ZnO‐CS BPM‐equipped cell decreased by 1.0 V. And the cell voltages of PVA‐SA/TiO2‐CS BPM‐equipped cell and PVA‐SA/ZnO‐CS BPM‐equipped cell were only reduced by 0.7 and 0.6 V, respectively. Furthermore, the hydrophilicity, thermal stability, and mechanical properties of the modified BPM were increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
This paper reports a novel fluorinated micro‐nano hierarchical Pd‐decorated SiO2 structure (hereafter called Pd/SiO2), which was formed by the deposition of Pd nanoparticles (NPs) on SiO2 microspheres. The SiO2 layers with microscale roughness were fabricated by electrospraying a solution prepared using the sol‐gel process. Subsequently, the Pd NPs were deposited using an ultraviolet reduction process. The resulting surfaces exhibited a micro‐nano hierarchical morphology. After fluorination, the micro‐nano hierarchical surface exhibited outstanding water repellency with a water contact angle (WCA) of 170° and a sliding angle <5°, indicating excellent superhydrophobic properties. The layers exhibited good long‐term durability and excellent ultraviolet resistance. Interestingly, the surface was oleophilic (CA of oil ~10°). These results show the potential of employing superhydrophobic fluorinated Pd/SiO2 layers in smart devices, such as self‐cleanable surfaces and intelligent water/oil separation systems.  相似文献   

10.
In this study, titanium dioxide (TiO2) or nano titanium dioxide (nano‐TiO2) was used as a cocatalyst in the flame‐retardant (FR) formulation of N‐methylol dimethylphosphonopropionamide (Pyrovatex CP New, FR), melamine resin [Knittex CHN, crosslinking agent (CL)], and phosphoric acid (PA) for cotton fabrics to improve the treatment effectiveness and minimize the side effects of the treatment. For FR‐treated cotton fabrics, the flame extinguished right after removal of the ignition source with no flame spreading. However, after neutralization and/or home laundering, FR–CL‐treated specimens failed the flammability test, whereas the opposite results were obtained from FR–CL–PA‐treated specimens. A noticeable result was that the TiO2/nano‐TiO2 cocatalyst had a significant effect on decreasing the flame‐spread rate. Thermal analysis found that the FR‐treated specimens without wet posttreatment showed two endothermic peaks representing the phosphorylation of cellulose and acid‐catalyzed dehydration. In addition, the treated fabrics showed some new characteristic peaks in their chemical structures; these were interpreted as carbonyl bands, CH2 rocking bands, and CH3 asymmetric and CH2 symmetric stretching. The surface morphology of the FR–CL–PA‐treated cotton specimens showed a roughened and wrinkled fabric surface with a high deposition of the finishing agent that had a lower breaking load and tearing strength, which resulted from the side effects of the CL used. However, the addition of a TiO2 or nano‐TiO2 cocatalyst could compensate for the reduction in the tensile strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The efficient separation and recovery of oil from water‐in‐oil emulsion poses a great challenge because of the rapid development of the petrochemical industry throughout the world. In this study, a facile method to develop a ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency oil/water separation was investigated. The electrospun PVDF/ZnO membrane was made, on which ZIF‐8 crystal seeds were then created with the revitalizing step and expanded in the growth step, and finally functionalized hierarchical micronanofiber PVDF‐g‐ZIF‐8 membrane was obtained. Results showed that oleophilic ZIF‐8 crystals on the surface of PVDF membrane dramatically increased the wettability of oil and tuned PVDF membrane from olephobicity to oleophilicity. The hydrophobic/lipophilic PVDF‐g‐ZIF‐8 membrane with a water contact angle up to 158° and a toluene contact angle down to 0° provides its separation efficiency for water‐in‐oil emulsion of 92.93% in an environmentally friendly and energy‐saving manner. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46462.  相似文献   

12.
In this work, a macromolecular coupling agent (BA‐MAA‐AN tercopolymer) was used for surface modification of native nano‐sized silicon nitride (Si3N4) powder. This modification strategy was designed for preparing nano‐Si3N4/NBR composites. The structure and surface properties of modified nano‐Si3N4 were systematically investigated by FTIR, XPS, TGA, TEM, Size Distributions Analyzer, and Contact Angle Measurement. It was found that, the optimum loading of BA‐MAA‐AN tercopolymer coated on the surface of nano‐sized Si3N4 is 10% of nano‐Si3N4. According to the spectra of FTIR, XPS and TGA, it can be inferred that this macromolecular coupling agent covalently bonds on the surface of nano‐sized Si3N4 particles and an organic coating layer is formed. The contact angle experiments show that the hydrophobic property of nano‐sized Si3N4 modified with macromolecular coupling agent is improved obviously. TEM reveals that modified nano‐Si3N4 possesses good dispersibility and the average diameter in NBR is less than 100 nm. It has also been found that the oil resistance of NBR based nanocomposites is improved greatly due to the modified nano‐Si3N4. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
To improve the impact toughness of polypropylene (PP), nano‐CaCO3 was prepared by an in situ synthesis. The surface of the nano‐CaCO3 was modified by KH‐550 silane coupling agent and NDZ‐401 titanium acid ester coupling agent. Nano‐CaCO3/PP composite materials were fabricated through a melt‐blending method and characterized, and their mechanical properties were analyzed. The impact toughness and the tensile strength of the PP were improved significantly by the incorporation of nano‐CaCO3. When the weight fraction of nano‐CaCO3 was 2%, the maximum impact toughness and tensile strength of the PP nanocomposites were 293% and 259%, respectively, of the values for neat PP. Observation of the impact fracture surface of the nanocomposites indicated that the dispersion of nano‐CaCO3 modified by NDZ‐401 coupling agent was more homogeneous than that of nano‐CaCO3 modified by the KH‐550 silane coupling agent. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
A series of the surface‐functionalized nano‐SiO2/polybenzoxazine (PBOZ) composites was produced, and an attempt was made to improve the toughness of PBOZ material, without sacrificing other mechanical and thermal properties. A benzoxazine functional silane coupling agent was synthesized to modify the surface of nano‐SiO2 particles, which were then mixed with benzoxazine monomers to produce the nano‐SiO2‐PBOZ nanocomposites. The notched impact strength and the bending strength of the nano‐SiO2‐PBOZ nanocomposites increase 40% and 50%, respectively, only with the addition of 3 wt % nano‐SiO2. At the same load of nano‐SiO2, the nano‐SiO2‐PBOZ nanocomposites exhibit the highest storage modulus and glass‐transition temperature by dynamic viscoelastic analysis. Moreover, the thermal stability of the SiO2/PBOZ nanocomposites was enhanced, as explored by the thermogravimetric analysis. The 5% weight loss temperatures increased with the nano‐SiO2 content and were from 368°C (of the neat PBOZ) to 379°C or 405°C (of the neat PBOZ) to 426°C in air or nitrogen with additional 3 wt % nano‐SiO2. The weight residue of the same nanocomposite was as high as 50% in nitrogen at 800°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
PEEK is the polymer of choice to replace metal encapsulants and other parts in active medical implants fixated into bone. The current challenge is to improve its biocompatibility with bone tissue to ultimately achieve osseointegration. PEEK sheets surfaces coated with plasma deposited nano thin polymer films using CH4, (CH4 + O2) and (CH4 + N2) gases. PEEK samples plasma treated with nonpolymerizing gases (O2) were also used for comparison. The adhesion performance of osteoblast like cells on the plasma‐treated PEEK surfaces and the presence of Vinculin in these cells were evaluated after long culturing period (12 days). X‐ray photoelectron spectroscopy and Auger spectroscopy were used to provide surface molecular information, surface hardness and molecular density. All plasma‐treated surfaces retained functionality after the sterilization process. PEEK surfaces with high number of oxygen functional groups and particularly oxygen rich thin polymer coating (plasma deposition using CH4+O2 gas mixture) resulted in strong cellular adhesion strength and large Vinculin amount. Further, osteoblast‐like cells responded better to surfaces with lower molecular density acting like another signal for cell adhesion. The osteoblast‐like cells response was weaker for surfaces with both thin films with nitrogen functional groups and nonfunctional (nonpolar) films. Furthermore, thin films rich in nitrogen functional groups repelled the cells, showed abnormal cells shape, smaller Vinculin amount and induced thicker cellular clusters with poor spread. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42181.  相似文献   

16.
A core–shell nanosilica (nano‐SiO2)/fluorinated acrylic copolymer latex, where nano‐SiO2 served as the core and a copolymer of butyl acrylate, methyl methacrylate, and 2,2,2‐trifluoroethyl methacrylate (TFEMA) served as the shell, was synthesized in this study by seed emulsion polymerization. The compatibility between the core and shell was enhanced by the introduction of vinyl trimethoxysilane on the surface of nano‐SiO2. The morphology and particle size of the nano‐SiO2/poly(methyl methacrylate–butyl acrylate–2,2,2‐trifluoroethyl methacrylate) [P(MMA–BA–TFEMA)] core–shell latex were characterized by transmission electron microscopy. The properties and surface energy of films formed by the nano‐SiO2/P(MMA–BA–TFEMA) latex were analyzed by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, and static contact angle measurement. The analyzed results indicate that the nano‐SiO2/P(MMA–BA–TFEMA) latex presented uniform spherical core–shell particles about 45 nm in diameter. Favorable characteristics in the latex film and the lowest surface energy were obtained with 30 wt % TFEMA; this was due to the optimal migration of fluorine to the surface during film formation. The mechanical properties of the films were significantly improved by 1.0–1.5 wt % modified nano‐SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Formation of porous films from poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) using the breath figures (BF) method was investigated by evaporating solutions in chloroform in humid air and examining film structure using optical and scanning electron microscopy (SEM). BF films were successfully fabricated from PHB (Mw = 486,000 g/mol) and displayed hexagonal arrays of pores, which varied in diameter (D = 7–2 μm) with solution concentrations (0.5–2.00%). SEM of fractured films also showed subsurface closed nano‐pores (D = 500–700 nm). BF films cast from PHBV (5% HV) formed arrays with smaller pores and apparent surface defects. Differential scanning calorimetry showed that porous PHB and PHBV films produced using the BF method were more crystalline than nonporous solvent cast films of PHB and PHBV. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Φ80 mm‐diameter, highly <110>‐oriented β‐SiC wafers were ultra‐fast fabricated via halide chemical vapor deposition (CVD) using tetrachlorosilane (SiCl4) and methane (CH4) as precursors. The effects of deposition temperature (Tdep) and total pressure (Ptot) on the orientations, microstructures, and deposition rate (Rdep) were investigated. Rdep dramatically increased with increasing Tdep where maximum Rdep was 930 μm/h at Tdep = 1823 K and Ptot = 4 kPa, leading to a maximum of 1.9 mm in thickness in 2 h deposition. The <110>‐oriented β‐SiC was obtained at Tdep > 1773 K and Ptot = 1–4 kPa. Growth mechanism of <110>‐oriented β‐SiC has also been discussed under consideration of crystallographic planes, surface energy, and surface morphology.  相似文献   

19.
The aim of this work was to obtain anatase nano‐TiO2 by the sol–gel method at room temperature and to achieve self‐cleaning Bombyx mori silk fabrics. Nano‐TiO2 sols based on an aqueous system and an ethanol system were prepared separately by the sol–gel method using tetrabutyl orthotitanate as a precursor at room temperature. Particle size analyses showed that nano‐TiO2 particles in an aqueous system were much bigger and more variant than those in ethanol. X‐ray diffraction patterns revealed a pure anatase phase of nano‐TiO2 in an aqueous system. Crystalline transformation of TiO2 from anatase to rutile by photoradiation at ambient temperature was also proved. Thermogravimetric and differential scanning calorimetric analyses confirmed the phase transformation of nano‐TiO2. A scanning electron microscope equipped with an energy‐dispersive spectrometer was used to investigate the surface morphology and elements of Bombyx mori silk fabrics. The contact angles with water, the kinetics of photocatalytic degradation of Methylene Blue, and decontamination of red‐wine‐stained fabrics under ultraviolet radiation demonstrated that the fabrics had good self‐cleaning properties and photoinduced hydrophilicity.  相似文献   

20.
This work deals with the incorporation of deca‐dodecasil 3 rhombohedral (DD3R) zeolite as an inorganic filler into the Pebax®‐1074‐based polymer matrix to enhance the performance of the pure polymeric membrane in CO2/CH4 separation. The membranes were fabricated with different concentrations of DD3R. Separation performances of the membranes were investigated at various feed pressures and temperatures. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) analysis of the prepared membranes were performed. In the best case, selectivity for CO2/CH4 separation was improved, while the permeability decreased. Membranes with 1 and 5 wt % DD3R were located in the acceptable region beyond the Robeson plot (1991) for CO2/CH4 gas pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号