首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of core‐shell structured latexes, poly(methyl methacrylate‐co‐butadiene‐co‐styrene) (MBS) and poly(methyl methacrylate‐co‐methylphenyl siloxane‐co‐styrene) (MSiS) were used to modify recycled polycarbonate (PC) for the enhancement of toughness and flame retardancy. The impact strength of the modified PC blends was not improved after melt‐blending recycled PC with these two kinds of latexes, probably because the latex particles were not evenly dispersed in the PC matrix because of the incompatibility between PC and PMMA shell of the latexes. Addition of a compatibilizer, e.g. diglycidyl ether of bisphenol‐A or poly(styrene‐co‐maleic anhydride), can effectively enhance the toughening effect of recycled PC with core‐shell structured modifiers. The presence of compatibilizer in the blends reduces the interfacial tension and introduces a steric hindrance to coalescence, and thus enhances the interfacial adhesion between PC domain and PMMA shell, and improves the dispersion of core‐shell structured particles in the PC matrix. The ternary blends achieve a high impact resistance by cavitation of the particles, which relieves the triaxial stress and promotes massive shear yielding of the matrix, and then enables the matrix to fracture by the plane stress ductile tearing mode. Additionally, MSiS has a silicone‐based core and can effectively retard the combustion of recycled PC. The blends containing 7 wt % MSiS and 3 wt % compatibilizer can achieve a UL94 V‐0 rating in vertical burning test. We proposed that, during combustion, a fine dispersion of MSiS particles in the PC matrix facilitates the rapid migration of MSiS and formation of a uniform and highly flame resistant char barrier on the surface of the modified PC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
A series of methyl methacrylate‐butadiene‐styrene (MBS) graft copolymers were synthesized via seeded emulsion polymerization techniques by grafting styrene and methyl methacrylate on poly(butadiene‐co‐styrene) (SBR) particles. The chlorinated poly(vinyl chloride) (CPVC)/MBS blends were obtained by melting MBS graft copolymers with CPVC resin, and the effect of the core/shell ratio of MBS graft copolymer and SBR content of CPVC/MBS blends on the mechanical properties and morphology of CPVC/MBS blends was studied. The results showed that, with the increase in the core/shell ratio, the impact strength of the blend increased and then decreased. It was found that, when the core/shell ratio was 50/50, the impact strength was about 155 J/m, and the tensile strength evidently increased. The toughness of the CPVC/MBS blend was closely related to the SBR content of the blend, and with the increasing of SBR content of blend, the impact strength of the blend increased. The morphology of CPVC/MBS blends was observed via scanning electron microscopy. Scanning electron microscopy indicated that the toughness of CPVC/MBS blend was consistence with the dispersion of MBS graft copolymers in the CPVC matrix. J. VINYL ADDIT. TECHNOL., 22:501–505, 2016. © 2015 Society of Plastics Engineers  相似文献   

3.
The relationship of blend morphology to deformation mechanisms and notched Izod impact strength was studied with three butadiene-based impact modifiers for polycarbonate (PC). The impact modifiers were a linear polybutadiene (PB), a styrene–butadiene–styrene block copolymer (SBS), and a structured latex particle having a PB core and methyl methacrylate/styrene shell (MBS). The particle-size distribution in the blends was determined from transmission electron micrographs (TEM). Fractographic analysis combined with TEM examination of thin sections from impacted specimens provided insight into the failure mechanisms. Good impact was achieved with PC/MBS blends when cavitation of the core–shell particles relieved triaxiality and enabled the matrix to fracture by the plane stress ductile tearing mode that is characteristic of thin PC. The best impact properties were obtained with PC/SBS blends when the modifier was dispersed as aggregates of small particles. Cavitation at the weak internal boundaries relieved triaxiality, but subsequent coalescence of cavitated particles during ductile drawing of the matrix created critical size voids and the resulting secondary cracks reduced the toughness of the blend. In general, PB did not significantly enhance the impact strength of PC. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Except by elastomers, the toughness of nylon‐6 (N‐6) can be improved by the addition of rigid poly(styrene‐co‐maleic anhydride) (SMA). In this case, strength and stiffness are also enhanced. Combination of SMA with maleated ethylene‐propylene rubber or styrene‐ethene/butene‐styrene with a total content below 15% gives a ternary blend having a toughness level close to elastomer toughening, whereas the strength and stiffness reached at least the Nylon‐6 values. An explanation is a synergistic combination of both elastomer and rigid polymer toughening mechanisms. An opposite effect on mechanical behavior was found with high contents of both additives. Except for worsened strength and stiffness, in some cases, a higher elastomer content even did not enhance the toughness. This effect can be explained by too fine phase structure found, causing the matrix ligament dimension to be below its minimum critical value. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1404–1411, 1999  相似文献   

5.
The toughness as a function of temperature of polycarbonate modified by blending with core-shell structured latex particles was evalated. Comparisons were made among a commercial core-shell latex (MBS), other core-shell (CS) latexes that incorporated a single component rubbery core, and a new class of interpenetrating polymer network (IPN) core-shell latexes with two elastomers in the core. Notched tensile tests differentiated among the blends in terms of their toughness. The most effective modifier at low temperatures was the commercial MBS latex. The CS latexes produced blends that were only slightly less tough than the MBS blends despite better dispersion of MBS and better adhesion to the matrix. The IPN blends were the least tough at low temperatures; however, at 25°C, a blend with IPN had the highest impact strength. Differences between CS and MBS blends were attributed to differences in the percent of butadiene-containing rubber and the chemical nature of the shell. A comparison among the CS latexes showed that increasing the acrylonitrile content of the shell increased the toughness, and increasing the rubber content or the gel fraction of the core increased the toughness. © 1996 Wiley & Sons, Inc.  相似文献   

6.
The Izod impact strength and tensile elongation‐to‐break were measured for blends of nylon 66 and polystyrene in a polypropylene matrix with and without compatibilization by an ionomer resin (for nylon 66) and a styrene‐block‐ethylene‐co‐butylene‐block‐styrene copolymer (for polystyrene). With 20% nylon 66 and 20% polystyrene, about 5% of each compatibilizer was optimal. When used together for the ternary blend, there seemed to be little gross interference (or synergism) between the compatibilizers. A comparison between binary blends suggests that what interaction does exists may be synergistic. Polym. Eng. Sci. 44:1800–1809, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
The effect of styrene–butadiene–styrene content on morphology, melting, crystallinity, dynamic mechanical properties and relaxation processes of polypropylene/poly(styrene-co-acrylonitrile)/styrene–butadiene–styrene blends was investigated. Styrene–butadiene–styrene reduced the average size of dispersed particles and generated complex aggregates in the matrix. Morphology development examined by dynamic mechanical thermal analysis showed increased damping of poly(styrene-co-acrylonitrile) domains at high styrene–butadiene–styrene contents. All blends showed reduced crystallinity and melting point compared with neat polypropylene. Poorer nucleation effect of dispersed particles at high styrene–butadiene–styrene loadings was observed. Compatibilization accelerated the form relaxation of dispersed particles. Additional relaxation process probably due to styrene–butadiene–styrene chains was observed in blends containing 10% and higher styrene–butadiene–styrene content.  相似文献   

8.
Blends of polystyrene (PSt) hard particle latex with three different particle sizes (96, 72, and 61 nm) and a n‐butyl acrylate‐co‐styrene (BA‐co‐St) copolymer soft latex with a 204 nm particle size were synthesized by emulsion polymerization. Latexes were standardized at 25% solids and blended at different concentrations by wt% of PSt:BA‐co‐St for every hard particle size. Finally, films from each blend were obtained. Morphology of each film prepared was examined by transmission electron microscopy, and it was found that the hard particles are randomly distributed in the films inside the copolymer matrix. The effect on mechanical properties of different PSt concentrations and particle sizes was assessed by DMA as a function of temperature. The results indicate that rigidity of the blended latex increases as the particle size diminishes as determined by the reduction in damping in the tan δ peak. The storage modulus increases as the concentration of PSt increases in the blends and the values depend upon the size of PSt particles. Mechanical properties at tension indicate that decreasing the size of the PSt particles and increasing their concentration increase the Young's modulus and ultimate strength at tension because of an increase in the rigidity of the films. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
A novel nylon‐6/clay/acrylate rubber ternary nanocomposite has been prepared using a process developed by the authors. The process consists of two steps: firstly, an acrylate rubber/clay composite (ARCC) was manufactured by spray‐drying a mixture of clay slurry and irradiated acrylate rubber latex; secondly, the nylon‐6/unmodified clay/acrylate rubber ternary nanocomposite was prepared by blending ARCC and nylon‐6. It has been found that the acrylate rubber particles and clay platelets can help each other to disperse or exfoliate in the nylon‐6 matrix. The silicate layers without organic treatment are exfoliated with the aid of irradiated acrylate rubber particles and the irradiated acrylate rubber particles are uniformly dispersed in the matrix with the aid of clay platelets. The novel nanocomposite prepared using the new process shows simultaneously high impact strength, high flexural modulus and high heat distortion temperature. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
The morphologies of a ternary blend of nylon 66 and polystyrene in a polypropylene matrix with and without compatibilization by an ionomer resin (for nylon 66) and a styrene‐block‐ethylene‐co‐butylene‐block‐styrene (SEBS) copolymer (for polystyrene) were investigated by transmission electron microscopy (TEM) of stained thin sections. The morphology found with the two compatibilizers (a five‐component mixture) was essentially that of the binary blends of nylon 66/polypropylene and of polystyrene/polypropylene with their respective compatibilizers, indicating no gross interference between the two compatibilization systems. However, several interactions were discerned: 1) an association of the polystyrene with the nylon in the compatibilized blends (partial wetting), 2) a presence of larger particles when both compatibilizers were added to the binary blends, and 3) a possible synergism, in which less of each compatibilizer was needed when they were both present. Polym. Eng. Sci. 46:385–398, 2006. © 2006 Society of Plastics Engineers.  相似文献   

11.
A series of methyl methacrylate‐butadiene‐styrene (MBS) core‐shell particles were synthesized by seeded emulsion polymerization. All the MBS particles are designed with the same defined chemical composition, which is a prerequisite for producing transparent blends with poly(vinyl chloride) (PVC). Three different growth manners of core‐shell particles: agglomeration of small styrene‐butadiene rubbers (SBRs) followed by styrene (ST) and methyl methacrylate (MMA) monomers grafting, agglomeration of small MBS particles and traditional MBS with single SBR rubber core, and ST/MMA shells are used. The effects of growth manners of MBS on the properties and deformation mechanism of PVC/MBS blends are studied. It is found that all the MBS particles can toughen the PVC matrix effectively, but different deformation modes are observed: cavitation in large particles, debonding at the PVC/MBS interface, rubber cavitation, and clusters of voids, respectively. In addition, it is found that the stress‐whitening extent is associated with the deformation modes. J. VINYL ADDIT. TECHNOL., 22:37–42, 2016. © 2014 Society of Plastics Engineers  相似文献   

12.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
To describe the morphology of the core–shell latex particle of methyl methacrylate–butadiene–styrene graft copolymer (MBS) quantitatively, we propose four parameters, that is, the diameter of the core, the shell thickness (TH), the roundness of the core, and the eccentricity (E); we calculated these parameters with geometrical parameters determined by the analysis of transmission electron microscope images. The mean values and distributions of the four parameters based on a certain amount of particles were used for quantitative characterization of MBS latex samples. With increasing monomer‐to‐polymer ratios of the graft polymerization, both the MBS TH and the numbers of homopolymer particles increased, and the core–shell morphology tended to be irregular. For the MBS latices derived from poly(styrene–butadiene) latex with a wide distribution of particle sizes, the core–shell structures of the larger particles were different from those of smaller ones to a certain extent, and both the TH and the E decreased with increasing core size. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 855–861, 2003  相似文献   

14.
Effects of a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA) on compatibilization and mechanical properties of nylon‐12,12/nylon‐6 blends were investigated. The results showed that addition of SEBS‐g‐MA could improve the compatibility between nylon‐12,12 and nylon‐6. Nylon‐12,12 could disperse very well in nylon‐6 matrix, although the dispersion of nylon‐6 was poor when nylon‐6 was the dispersed phase. At a fixed nylon‐12,12/nylon‐6 ratio of 30/70, supertoughness was achieved with addition of 15% SEBS‐g‐MA in weight. Scanning electron microscopy of the impact‐fractured surface indicated that cavitation and matrix shear yielding were the predominant mechanisms of impact energy dissipation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1446–1453, 2004  相似文献   

15.
The work focused on the elucidation of several key parameters in toughening poly(vinyl chloride) (PVC) by the methyl methacrylate–butadiene–styrene (MBS) core‐shell particles. Accordingly, blends containing various weight percent of the MBS particles were prepared and characterized by dilute solution viscometry, dynamic light scattering, dynamic mechanical thermal analysis, transmission electron microscopy, and temperature variable impact test. The results showed PVC/MBS solution miscibility in almost all compositions with their maximum thermodynamic affinities at about 17 and 67 wt % of MBS in tetrahydrofurane (THF). In addition, MBS weight percent increase in its blend with the PVC above 10 led to severe impact energy raise with eventual leveling at about 17 wt %. Furthermore, blend toughness and its components miscibility in solution increased in parallel up to 20 wt % of MBS particles. On the other hand, blend toughness declined with test temperature decrease toward impact modifier core Tg at about ?30°C even for the sample with 20 wt % of the MBS particles. Finally, the brittle‐ductile transition of the blend containing 20 wt % of the MBS particles comparison with its matrix tan δ‐temperature correlation implied 2500 J/m impact energy equivalence with 90°C sample temperature rise in secondary relaxation activation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

17.
In this study, the molten ε‐caprolactam (CL) solution of maleated styrene‐ethylene/butylene‐styrene block copolymer (SEBS‐g‐MA) and polystyrene (PS) containing catalyst and activator were introduced into a twin screw extruder, and polyamide 6 (PA6)/SEBS/PS blends were successfully prepared via anionic polymerization of CL by reactive extrusion. The mechanical properties measurements indicated that both the elongation at break and notched Izod impact strength of PA6/SEBS/PS (85/10/5) blends were improved distinctly with slight loss of tensile and flexural strength as compared to that of pure PA6. The images of transmission electron microscopy showed that a core–shell structure with PS core and poly (ethene‐co‐1‐butene) (PEB) shell was formed within the PA6 matrix. Fourier transform infrared was used to investigate the formation mechanisms of the core–shell structure. POLYM. ENG. SCI., 53:2705–2710, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6 30/70) blends were impact modified by addition of three kinds of maleated polystyrene‐based copolymers, i.e., maleated styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), maleated methyl methacrylate‐butadiene‐styrene copolymer (MBS‐g‐MA), and maleated acrylonitrile‐butadiene‐styrene copolymer (ABS‐g‐MA). The mechanical properties, morphology and rheological behavior of the impact modified PPO/PA6 blends were investigated. The selective location of the maleated copolymers in one phase or at interface accounted for the different toughening effects of the maleated copolymer, which is closely related to their molecular structure and composition. SEBS‐g‐MA was uniformly dispersed in PPO phase and greatly toughened PPO/PA6 blends even at low temperature. MBS‐g‐MA particles were mainly dispersed in the PA6 phase and around the PPO phase, resulting in a significant enhancement of the notched Izod impact strength of PPO/PA6 blends from 45 J/m to 281 J/m at the MBS‐g‐MA content of 20 phr. In comparison, the ABS‐g‐MA was mainly dispersed in PA6 phase without much influencing the original mechanical properties of the PPO/PA6 blend. The different molecule structure and selective location of the maleated copolymers in the blends were reflected by the change of rheological behavior as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Graft copolymers of isoprene (Is), styrene (St), and methyl methacrylate (MMA) monomers (MIS) with typical core–shell structure were synthesized by seed emulsion polymerization and used as a toughening agent for preparation of polyvinyl chloride (PVC)/MIS blends. The St and MMA monomers were separately grafted on the cross‐linked poly‐isoprene rubber core. The toughness, sub‐micro‐morphology, and dynamic mechanical behavior of the blends were characterized by impact machine, scanning electron microscopy (SEM), and dynamic mechanical analyzer. The results showed that the impact strength of the blends was optimized when the content of MIS in PVC/MIS blends was kept at a constant value of 8 wt %, while the content of Is in MIS was 70 wt %. SEM morphologies of impact fractured surface showed that the PVC/MIS blends were typical ductile fracture because of the toughness effect of rubber particles, which correlated well with the mechanical properties. Under the same rubber content condition, the curves of the dynamic mechanical behavior of MIS toughened PVC blends appeared a more obvious rubber peak, indicating that the rubber content of MIS was higher than that of methyl methacrylate–butadiene–styrene (MBS), which explained the better toughening effect of MIS compared with MBS. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
The impact behaviors of nanoclay filled nylon 6 (nano‐nylon 6) or nylon 6 blended with poly(acrylonitrile‐butadiene‐styrene) terpolymers (ABS) were investigated here using polybutadiene grafted maleic anhydride (PB‐g‐MA) as a compatibilizer to enhance interphase interaction. It is found that impact strength increases slightly for nano‐nylon 6/ABS blend system with the addition of compatibilizer at various ABS compositions, but increases to a certain degree for nylon 6/ABS case. Similar effects are also found with decreasing test temperature, especially at a blend composition of 80/20. These discrepancies are attributed to a different degree of available reaction sites from amine group on nano‐nylon 6 and nylon 6 as well as the rigidity of clay in deteriorating toughness. As for thermal properties, the heat distortion temperature shows marginally decrease in the nano‐nylon 6/ABS blend. Through morphology observations, the etched ABS particle sizes tend to decrease with the additions of compatibilizer for both blends, but are larger with higher contents of ABS concentrations. Those observations account for impact behaviors of the investigated blends. POLYM. ENG. SCI., 45:1461–1470, 2005. © 2005 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号