首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A transparent honeycomb insulated ground integrated‐collector‐storage system has been investigated for the engineering design and solar thermal performance. The system consists of a network of pipes embedded in a concrete slab whose surface is blackened and covered with transparent insulation materials (TIM) and the bottom is insulated by the ground. Heat may be retrieved by the flow of fluid through the pipe. A simulation model has been developed; it involves the solution of the two‐dimensional transient heat conduction equation using an explicit finite‐difference scheme. Computational results have been used to determine the effect of such governing parameters as depth as well as pitch of the pipe network and collector material on the thermal performance of the system. The pipe network depth of 10 cm and the TIM cover made of 5 cm compounded honeycomb seem suitable for the proposed system. Solar gain (solar collection efficiency of 30–50% corresponding to collection temperature of 40–60°C) and the diurnal heat storage characteristics of the system are found to be of the right order of magnitude for solar water heating applications. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the performance of two solar domestic hot waters (SDHW) with drain water heat recovery (DWHR) units is investigated. Both SDHW systems are recently installed at the Archetype Sustainable Twin Houses at Kortright Center, Vaughan, Ontario. The first SDWH system in House A consists of a flat plate solar thermal collector in combination with a gas boiler and a DWHR unit. The second SDHW system in House B includes an evacuated tube solar collector, an electric tank, and a DWHR unit. Both systems are modeled in TRNSYS, and the models are validated by experimental data. The addition of the DWHR and the flat‐plate solar thermal collector would result in 1831 kWh of annual energy saving in House A. While the addition of the DWHR and the evacuated tube collector in House B would result in an annual energy saving of 1771 kWh. Subsequently, the models are used to investigate the performance of similar systems for five major Canadian cities of Halifax, Montreal, Toronto, Edmonton, and Vancouver. The conjunctions of solar thermal collectors with DWHR units are found most beneficial in Edmonton. It is also noted from experimental and simulated results that flat‐plate solar collector‐based water heater produced more thermal energy than the system based on the evacuated tube solar collector for all major Canadian cities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The thermal performance of transparently insulated integrated-collector-storage solar water heaters is investigated theoretically as well as experimentally for a comparative study of cover systems having transparent insulation materials devices placed between the top glazing and the absorber. The data on solar transmittance, heat loss reduction characteristics and solar collector-storage efficiencies of various configurations is generated for the system performance comparisons. These hot water systems exhibit average (diurnal basis) solar collection and storage efficiencies in the range of 20–40% at a collection temperature of 40–50°C. The performance of water heaters with cover system having absorber-perpendicular configuration of TIM excel over absorber-parallel TIM covers. The effect of variation in the temperature of heat collected and cost of cover systems on the performance comparisons is also discussed.  相似文献   

4.
This paper evaluates the performance of narrow-gap vertical mantle heat exchangers with a two-pass arrangement for use in pumped-circulation solar water heaters. Both measured mantle side and tank side heat transfer correlations have been developed and implemented in a TRNSYS model of a complete solar water heater incorporating this type of heat exchanger. Predictions of the annual solar contribution for mantle-tank systems are compared to direct-coupled systems. The direct-coupled systems are found to provide slightly higher annual energy saving than mantle-tank systems for standard domestic hot water demand in Australia. However, the reduction in performance is outweighed by the benefit of freeze protection provided by incorporating a collector loop heat exchanger in the system.  相似文献   

5.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

6.
To performance comparative studies, two sets of water-in-glass evacuated tube solar water heater (SWH, in short) were constructed and tested. Both SWHs were identical in all aspects but had different collector tilt-angle from the horizon with the one inclined at 22° (SWH-22) and the other at 46° (SWH-46). Experimental results revealed that the collector tilt-angle of SWHs had no significant influence on the heat removal from solar tubes to the water storage tank, both systems had almost the same daily solar thermal conversion efficiency but different daily solar and heat gains, and climatic conditions had a negligible effect on the daily thermal efficiency of systems due to less heat loss of the collector to the ambient air. These findings indicated that, to maximize the annual heat gain of such solar water heaters, the collector should be inclined at a tilt-angle for maximizing its annual collection of solar radiation. Experiments also showed that, for the SWH-22, the cold water from the storage tank circulated down to the sealed end of tubes along the lower wall of tubes and then returned to the storage tank along the upper wall of solar tubes with a clear water circulation loop; whereas for the SWH-46, the situation in the morning was the same as the SWH-22, but in the afternoon, the cold water from the storage tank on the way to the sealed end was partially or fully mixed with the hot water returning to the storage tank without a clear water circulation loop, furthermore, such mixing became more intense with the increase in the inlet water temperature of solar tubes. This indicated that increasing the collector tilt-angle of SWHs had no positive effect on the thermosiphon circulation of the water inside tubes. No noticeable inactive region near the sealed end of solar tubes for both systems was observed in experiments.  相似文献   

7.
Double-pass solar air heaters occupy an important place among solar air heating systems, because of minimal heat loss and maximum thermal efficiency with marginal heater size and cost. In the present work, investigations related to the thermal performance predictions have been carried out for double-pass flat and V-corrugated absorber plate solar air heaters under recycle operation. The mathematical models proposed herein are solved using an analytical approach that uses an iterative solution procedure. Furthermore, based on simulation results obtained from the analytical study, the optimum value of the recycle ratio, the mass flow rate, the absorptivity and the emissivity at which the heaters yield the maximum value of the thermal efficiency have been identified and presented using response surface methodology (RSM). The results of RSM revealed that the mathematical models are significant. In addition, results of the present study are validated and compared with previous studies. A reasonable agreement and significant improvement have been achieved.  相似文献   

8.
This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium‐based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed‐bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed‐bed solar air heater. The rate of heat recovered from the packed‐bed solar air heater varied between 9.3 and 151.5 W m?2, while the rate of thermal exergy recovered from the packed‐bed solar air heater varied between 0.04 and 8.77 W m?2 during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed‐bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
文章建立了三维非稳态的全玻璃真空管太阳热水器的数值模型,分析了夜间散热时,该热水器内的流动和传热特征,并且在夜间同一工况下,模拟研究了贮热水箱保温材料的导热系数、保温厚度,以及真空管涂层的发射率对贮热水箱温度、真空管温度和该热水器夜间热损失的影响。分析结果表明:随着散热过程的持续进行,全玻璃真空管太阳热水器内温度分层情况越来越明显,内部流体的流速越来越小,真空管内静滞区域自下往上逐渐扩大;当贮热水箱保温材料的导热系数由0.035 W/(m·℃)减小至0.020 W/(m·℃)时,该热水器的夜间热损失减少了8.5%;当贮热水箱保温厚度由50 mm增加至60 mm时,该热水器的夜间热损失减少了5.0%;当真空管涂层的发射率由0.06减小至0.05时,该热水器的夜间热损失减少了4.0%。  相似文献   

10.
真空玻璃盖板热管平板式太阳能热水器的研制   总被引:4,自引:0,他引:4  
介绍了研究成功的采用真空玻璃盖板的热管平板式太阳能热水器,测试了其性能,并与全玻璃真空管太阳能热水器和蜂窝热管太阳能热水器进行了比较。实测得到,真空玻璃盖板热管平板式热水器的日平均效率比后两分别大13.3%和6.5%,平均热损系数比后两分别小52.5%和21.5%。真空玻璃盖板平板式太阳能热水器性能优越,有很好的应用前景。  相似文献   

11.
In this paper, improving the thermal performance of flat plate solar water heater systems by inserting different tube configurations inside the riser pipes has been numerically and experimentally studied. This study is focused on increasing the moving of energy from riser pipes to the operating fluid within the riser pipes. To achieve that, the diameter of the riser pipes was increased along with the insertion of different tube configurations within them, namely, smooth, helical, and wavy tubes, keeping the same amount of the operating liquid. A comparison was performed to determine the best in terms of coefficient of heat transfer of the operating liquid, mass flow rate of the operating liquid, pressure drop, and water temperature in the storage tank, as a thermal performance indication of the system under study. The findings show the model consisting of a straight tube inside the riser pipe provides the best thermal performance. In terms of thermal performance, the straight model outperforms the conventional model by 12.3%. An experimental and numerical comparison between the optimum model (straight model) was conducted. The study proves that the average difference between numerical results and experimental findings is 7.2%.  相似文献   

12.
The effect of thermal conductivity of the absorber plate of a solar collector on the performance of a thermo-siphon solar water heater is found by using the alternative simulation system. The system is assumed to be supplied of hot water at 50 °C and 80 °C whereas both are used in domestic and industrial purposes, respectively. According to the Rand distribution profile 50, 125 and 250 l of hot water are consumed daily. The condition shows that the annual solar fraction of the planning functions and the collector's configuration factors are strongly dependent on the thermal conductivity for its lower values. The less dependence is observed beyond a thermal conductivity of 50 W/m °C for the solar improper fraction and above 100 W/m °C for the configuration factors. In addition, the number of air ducts and total mass flow rate are taken to show that higher collector efficiency is obtained under the suitable designing and operating parameters. Different heat transfer mechanisms, adding natural convection, vapor boiling, cell nucleus boiling and film wise condensation is observed in the thermo-siphon solar water heater with various solar radiations. From this study, it is found that the solar water heater with a siphon system achieves system characteristic efficiency of 18% higher than that of the conventional system by reducing heat loss for the thermo-siphon solar water heater.  相似文献   

13.
To assess the thermal performance in the climate conditions of western and central Iraq, the advantages of using a solar air collector with various turbulator absorber plates are experimentally explored. Four distinct kinds of absorber plates are provided flat plate (F), triangular (T), rectangular (R), and circular (C) turbulators at different air mass flow rates. The collector's economic properties and overall thermal performance are compared to the conventional flat plate turbulator heating systems. The main findings suggest that delta turbulators improve collector economics and overall thermal performance by generating vortex and dampening the formation of the thermal boundary layer in the direction of airflow. Furthermore, when the mass flow rate increases, the thermal performance improves, and the efficiency increases for all mass flow rates, resulting in good thermal performance for the rectangular plate collector when compared to other collectors. When compared to other types of configurations, the daily average efficiency of solar air collectors for flat plate (F), triangular (T), rectangular (R), and circular (C) turbulators are 28%, 67%, 39%, and 48%, respectively, at 50° tilt angle while at 90° tilt angle they are 44%, 76%, 54%, and 63%, respectively, as = 0.0377 kg/s. The maximum daily average efficiency fitted with rectangular turbulators have about 86% at the largest = 0.1 kg/s. This study will also give a unique direction to the work trend in the western and central parts of Iraq throughout the winter months.  相似文献   

14.
介绍了一种兼具蓄热与散热两种状态的太阳能供暖用睡床。该睡床的下部为蓄热水箱,可从太阳能集热板获取热量供给睡床。研究了基于该睡床的供暖系统在北京地区的应用情况,并分析了不同状态下床板上表面的散热量与被褥内的温度。结果表明:在全天散热状态下,典型年供暖季集热器效率为37.7 %,复合型睡床的有效供热量为4 390.2 MJ,太阳能保证率为80.7 %;在白天保温−夜间散热下,集热器效率为33.1 %,复合型睡床的有效供热量为4 441.1 MJ,太阳能保证率为81.8 %。  相似文献   

15.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

16.
高效平板太阳能集热器盖板的热工性能实验研究   总被引:3,自引:0,他引:3  
针对目前平板太阳能集热器高温下集热效率低的缺点,研究通过改善透明盖板性能来提高集热效率的方法。在实验基础上,综合各种因素,通过对比实验方法比较了中空玻璃(DG)、充氩气中空玻璃(ADG)、Low-E中空玻璃(LDG)和Low-E充氩气中空玻璃(LADG)作为盖板对太阳能集热参数和效率的影响,并研究了上述4种盖板对太阳辐射的透射率和保温性能的不同影响。  相似文献   

17.
An experimental analysis of dual‐purpose corrugated plate solar collector (DPCPSC) is used to heat water and air simultaneously. Three types of corrugated plate solar collectors (CPSCs) were presented: namely single purpose corrugated plate solar collector (SPCPSC), only water heating of aluminum absorber plate (SPCPSC 1) and copper absorber plate (SPCPSC 2) and DPCPSC type water‐air compound heating of aluminum based absorber plate. In this experimental investigation, the comparative analysis of SPCPSC 1 and 2 at mass flow rate (MFR) of water was 0.025 kg/s (case 1 and 2) and 0.04167 kg/s (case 3 and 4), DPCPSC at MFR of air was 0.011 kg/s while MFR of water was 0.025 kg/s (case 5) and 0.04167 kg/s (case 6), respectively, and DPCPSC at MFR of water and air were 0.04167 and 0.023 kg/s, respectively (case 7), are analyzed. The results indicate that the efficiency of the DPCPSC, of case 6 is 16.74% higher than single purpose system that of case 3 and 6.65% also that of case 4. Comparing the DPCPSC, the optimum efficiency of case 7 is 8.64% higher than case 5 and 1.87% also higher than case 6.  相似文献   

18.
The present paper deals with an analysis of a forced circulation closed loop solar water heating system; withdrawal of hot water of constant flow rate from a storage tank through a heat exchanger is considered. The effect of flow rate and heat exchanger length on the performance has also been discussed for a typical set of parameters and for a typical cold day in Delhi (26 January 1980).  相似文献   

19.
This paper focuses on enhancing the energy collection efficiency of an integrated collector storage solar water heater (ICS SWH) by vee-corrugating the absorber and optimizing the design for the vee-included angle through simulation and experimental study. This paper presents an efficient algorithm for analyzing a vee-corrugated absorber ICS SWH using Engineering Equation Solver Software. For validating this algorithm, two models of ICS SWH systems have been fabricated: one with a flat absorber and the other with a 60° vee-included angle corrugated absorber with eight corrugations. The basic purpose of the fabrication of the flat absorber ICS SWH system was to approximate the absorptivity of the absorber. A typical value of 0.68 was estimated for the absorptivity of the aluminum absorber coated with nonselective black paint. After the experimental investigation of the 60° vee-included angle ICS SWH system, it was found that the real-time readings were in close agreement with the numerical model readings. For comparison with the previous work, a five-corrugation system with an approximate 90° vee-included angle with the same projected dimensions was modeled and the efficiencies of both the models for the time from 7 a.m. to 3 p.m. were calculated. The efficiency of the eight-corrugation model was 42.56%, which was better than the previous work of the five-corrugation model, with a 38.86% efficiency for the same ambient conditions. Also, it was theoretically deduced that we had an optimized system at 18 corrugations and a vee-included angle of 28.78°.  相似文献   

20.
王修彦  王梦娇  杜志锋  张芸 《节能》2012,31(1):37-39,43
基于我国当前火力发电状况,提出将太阳能蒸汽作为火电厂辅助蒸汽系统辅助热源的集成发电方案。以某600MW机组为例,提出多种太阳能蒸汽与燃煤机组集成方案,并分别对各方案进行热力计算及热经济性分析。结果表明:选取的集成方案不同,系统的热经济性不同;被取代蒸汽品质及数量越高,集成系统热经济性越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号