共查询到20条相似文献,搜索用时 0 毫秒
1.
A transparent honeycomb insulated ground integrated‐collector‐storage system has been investigated for the engineering design and solar thermal performance. The system consists of a network of pipes embedded in a concrete slab whose surface is blackened and covered with transparent insulation materials (TIM) and the bottom is insulated by the ground. Heat may be retrieved by the flow of fluid through the pipe. A simulation model has been developed; it involves the solution of the two‐dimensional transient heat conduction equation using an explicit finite‐difference scheme. Computational results have been used to determine the effect of such governing parameters as depth as well as pitch of the pipe network and collector material on the thermal performance of the system. The pipe network depth of 10 cm and the TIM cover made of 5 cm compounded honeycomb seem suitable for the proposed system. Solar gain (solar collection efficiency of 30–50% corresponding to collection temperature of 40–60°C) and the diurnal heat storage characteristics of the system are found to be of the right order of magnitude for solar water heating applications. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
2.
3.
4.
This paper presents an analysis of heat transfer processes in a transparent-honeycomb-insulated solar collector made of such low-energy materials as soil/sand/concrete, which also acts as a heat store. The analysis assumes solar intensity and atmospheric temperature as well as the resultant temperature in the ground and concrete/sand region to be periodic. An explicit expression for the heat flux that can be extracted at constant mass flow rate and at constant heat extraction temperature is derived. Numerical computations corresponding to typical months of June, September and December at New Delhi are presented. The solar conversion efficiency of 30–60% corresponding to a collection temperature in the range of 40–70°C is reported. The solar gain and heat storage characteristics of the proposed system are found to be of the right order of magnitude for solar water-heating applications. 相似文献
5.
针对传统Trombe墙冬季供热效率不高、夏季过热等问题,提出一种高效双通道型Trombe墙系统,对该系统在冬季时的热性能和采暖效果进行实验研究。结果表明,高效双通道型Trombe墙热效率是传统Trombe墙的1.6~3.4倍,室内温度相比于传统Trombe墙可升高0.7~5.7 ℃。其中,当总通道厚度为0.5 m,外通道为0.2 m,隔热板形状为凹凸板时热效率最高为31%,此时室内温度可达21.7 ℃。此外,在实验研究基础上建立高效双通道型Trombe墙的传热模型,并验证其准确性。 相似文献
6.
真空管太阳能热水器冬季热性能研究 总被引:1,自引:0,他引:1
本文根据GB/T19141—2003,设计建立了一套太阳能热水器热性能的测试系统,并用此系统对天津市场上销售的16种太阳能热水器产品进行了冬季的热性能测试,并分析了其主要的热性能指标,日有用得热量和平均热损因数。 相似文献
7.
直膨式太阳能热泵热水器热力性能分析及优化设计 总被引:2,自引:0,他引:2
针对"直膨式太阳能热泵热水器"750W实验样机(系统A)进行了过渡季节运行工况下的实验研究,根据实验数据计算出系统供热性能系数、太阳集热效率和各主要部件的有效能损失系数以及系统的有效能效率等热力学指标,对各部件可加以完善的潜力做了量化分析,为整套系统的进一步优化设计提供参考。根据分析结果,研制了小型化400W实验样机(系统B)并加以实验验证。通过对比分析发现,两套系统各主要部件的有效能损失以压缩机(其有效能损失系数,系统A为40%,系统B为34%)和太阳集热/蒸发器(其有效能损失系数,系统A为21%,系统B为37%)为最大,然后依次是冷凝器(其有效能损失系数,系统A为11%,系统B为8%)和热力膨胀阀(其有效能损失系数,系统A和系统B均为5%)。因此,压缩机的合理选配、集热器的优化设计是提高太阳能热泵热水器性能的关键。 相似文献
8.
9.
Basim Freegah 《亚洲传热研究》2023,52(2):1118-1141
In this paper, improving the thermal performance of flat plate solar water heater systems by inserting different tube configurations inside the riser pipes has been numerically and experimentally studied. This study is focused on increasing the moving of energy from riser pipes to the operating fluid within the riser pipes. To achieve that, the diameter of the riser pipes was increased along with the insertion of different tube configurations within them, namely, smooth, helical, and wavy tubes, keeping the same amount of the operating liquid. A comparison was performed to determine the best in terms of coefficient of heat transfer of the operating liquid, mass flow rate of the operating liquid, pressure drop, and water temperature in the storage tank, as a thermal performance indication of the system under study. The findings show the model consisting of a straight tube inside the riser pipe provides the best thermal performance. In terms of thermal performance, the straight model outperforms the conventional model by 12.3%. An experimental and numerical comparison between the optimum model (straight model) was conducted. The study proves that the average difference between numerical results and experimental findings is 7.2%. 相似文献
10.
A novel multistage solar desalination system with a photovoltaic heater was manufactured. The base of the down basin of the solar still had a layer of paraffin wax with a mass of 13 kg as a phase change material. The system has been studied to evaluate the enhancement of freshwater. Saltwater was heated by solar radiation and by a direct current water heater. The surfaces of condensation vapor, such as the pyramid glass cover and lower surface of two stacked trays, were designed. This is to improve the productivity of freshwater by decreasing the resistance of condensation. The high temperature of the glass cover is modified by using a cooling water shower, especially at the highest intensity. The study includes parameters, such as cooling water shower flow rate, down basin water level, and the effect of the heater. It is observed that the novel solar desalination is proportional to solar radiation, paraffin wax, the heat input from a heater, cooling water shower flow rate, and down basin water level. The Multiple Stage Effect Photovoltaic Heater (MSEPVH) can produce 15 L/day of distilled water. The excellent flow rate of cooling water, the total freshwater, and the efficiency of MSEPVH for the optimal day were mathematically and experimentally determined. 相似文献
11.
12.
13.
Buildings play a key role in total world energy consumption as a consequence of poor thermal insulation characteristics of facade materials. Among the elements of a typical building envelope, windows are responsible for the greatest energy loss because of their notably high overall heat transfer coefficients. About 60% of heat loss through the building fabric can be attributed to the glazed areas. In this respect, novel cost‐effective glazing technologies are needed to mitigate energy consumption, and thus to achieve the latest targets toward low/zero carbon buildings. Therefore in this study, three unique glazing products called vacuum tube window, heat insulation solar glass and solar pond window which have recently been developed at the University of Nottingham are introduced, and thermal performance analysis of each glazing technology is done through a comparative experimental investigation for the first time in literature. Standardized co‐heating test methodology is performed, and overall heat transfer coefficient (U‐value) is determined for each glazing product following the tests carried out in a calibrated environmental chamber. The research essentially aims at developing cost‐effective solutions to mitigate energy consumption because of windows. The results indicate that each glazing technology provides very promising U‐values which are incomparable with conventional commercial glazing products. Among the samples tested, the lowest U‐value is obtained from the vacuum tube window by 0.40 W/m2K, which corresponds to five times better thermal insulation ability compared to standard air filled double glazed windows. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
14.
为提高太阳能光热转换效率,建立同轴非完整型平移抛物面聚光系统。分析双面受热平板接收器的能量传递及转换过程,采用热阻网络图的分析方法建立平板接收器的理论计算模型。利用MATLAB 7.0软件编制程序实现了平板接收器的热性能计算。在结构参数、环境参数和进口参数确定的情况下,当吸热板导热系数、厚度和吸热板表面发射率变化时,分析温度、能量及热性能的变化趋势。研究表明:导热系数和吸热板厚度达到一定数值,继续增加对于提高接收器的热性能基本没有太大意义;吸热板表面发射率对热性能影响显著,采用发射率为0.1的选择性涂层可实现能量最大转化;环境温度在0~30 ℃变化时,双面受热比单面受热的热效率提高了8.18%~37.01%。 相似文献
15.
16.
M.S. Hossain R. Saidur H. Fayaz N.A. Rahim M.R. Islam J.U. Ahamed M.M. Rahman 《Renewable & Sustainable Energy Reviews》2011,15(8):3801-3812
The effect of thermal conductivity of the absorber plate of a solar collector on the performance of a thermo-siphon solar water heater is found by using the alternative simulation system. The system is assumed to be supplied of hot water at 50 °C and 80 °C whereas both are used in domestic and industrial purposes, respectively. According to the Rand distribution profile 50, 125 and 250 l of hot water are consumed daily. The condition shows that the annual solar fraction of the planning functions and the collector's configuration factors are strongly dependent on the thermal conductivity for its lower values. The less dependence is observed beyond a thermal conductivity of 50 W/m °C for the solar improper fraction and above 100 W/m °C for the configuration factors. In addition, the number of air ducts and total mass flow rate are taken to show that higher collector efficiency is obtained under the suitable designing and operating parameters. Different heat transfer mechanisms, adding natural convection, vapor boiling, cell nucleus boiling and film wise condensation is observed in the thermo-siphon solar water heater with various solar radiations. From this study, it is found that the solar water heater with a siphon system achieves system characteristic efficiency of 18% higher than that of the conventional system by reducing heat loss for the thermo-siphon solar water heater. 相似文献
17.
18.
In this paper, the performance of two solar domestic hot waters (SDHW) with drain water heat recovery (DWHR) units is investigated. Both SDHW systems are recently installed at the Archetype Sustainable Twin Houses at Kortright Center, Vaughan, Ontario. The first SDWH system in House A consists of a flat plate solar thermal collector in combination with a gas boiler and a DWHR unit. The second SDHW system in House B includes an evacuated tube solar collector, an electric tank, and a DWHR unit. Both systems are modeled in TRNSYS, and the models are validated by experimental data. The addition of the DWHR and the flat‐plate solar thermal collector would result in 1831 kWh of annual energy saving in House A. While the addition of the DWHR and the evacuated tube collector in House B would result in an annual energy saving of 1771 kWh. Subsequently, the models are used to investigate the performance of similar systems for five major Canadian cities of Halifax, Montreal, Toronto, Edmonton, and Vancouver. The conjunctions of solar thermal collectors with DWHR units are found most beneficial in Edmonton. It is also noted from experimental and simulated results that flat‐plate solar collector‐based water heater produced more thermal energy than the system based on the evacuated tube solar collector for all major Canadian cities. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
19.
Hassan Olfian Amirhossein Zabihi Sheshpoli Seyed Soheil Mousavi Ajarostaghi 《亚洲传热研究》2020,49(3):1149-1169
In the present study, the effect of utilizing two different types of baffles in the channel of the solar air heater is investigated numerically. The studied baffles include angled rectangular baffles and angled V‐shaped baffles, which are mounted on the bottom and top walls of the duct, respectively. Both considered baffles were evaluated separately which the studied parameter in each section was the angular position of baffles. Finally, the best‐obtained results of both sections were compared to each other. The results indicated that in the rectangular model by comparison between 90° model and no baffle, it was found that the pressure drop and average Nusselt number increase 316.67% and 148.15%, respectively at Reynolds number (Re) = 2000. Also, in V‐shaped angled baffles, the thermal efficiency of β = 90°, 60°, 45°, and 30° are 27%, 18%, 13% higher than no baffle channel at Re = 2000, respectively. Furthermore, at low Re (about Re below 300), utilizing baffles into the channel had no effect on the thermal efficiency of the system compared to the no baffle channel. However, at high Re, it was found that the highest thermal efficiency occurred in the model of rectangular baffles with an angle of 90°. 相似文献
20.
家用太阳热水器热性能试验方法及标准探讨 总被引:4,自引:0,他引:4
对家用太阳热水器热性能的评价方法进行了分析,国标中采用“平均日效率”反映热水器的热性能有一定局限性,“平均热损系数”定义的物理含义不清晰,数学表达式的推导也值得商榷。国标中提出的测定水箱平均水温的方法对不同种类的热水器及不同种类的水箱会带来不易控制的误差。 相似文献