首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bamboo fibers reinforced unsaturated polyester (UPE) composites were prepared by compression molding. Effects of fiber extraction, morphology, and chemical modification on the mechanical properties and water absorption of the bamboo fibers‐UPE composites were investigated. Results showed that the unidirectional original bamboo fibers resulting composites demonstrated the highest tensile strength, flexural strength, and flexural modulus; the 30–40 mesh bamboo particles resulting composites had the lowest tensile strength and flexural strength, but had comparable flexural modulus with that of chemical pulp fibers. The treatment of bamboo fibers with 1,6‐diisocyanatohexane (DIH) and 2‐hydroxyethyl acrylate (HEA) significantly increased the tensile strength, flexural strength and flexural modulus, and water resistance of the resulting composites. Fourier Transform Infrared and X‐ray photoelectron spectroscopy analyses showed that DIH and HEA were covalently bonded onto bamboo fibers. Scanning electron microscopic images of the fractured surfaces of the composites showed that the treatment of bamboo fibers greatly improved the interfacial adhesion between the fibers and UPE resins. The water absorption kinetics of the composites was also investigated; and the results showed that the water absorption of the composites fitted Fickian behavior well. POLYM. COMPOS., 37:1612–1619, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
Hemp‐fiber‐reinforced unsaturated polyester (UPE) composites were prepared by compression molding. The treatment of hemp fibers with N‐methylol acrylamide (NMA) and sulfuric acid as a catalyst significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp–UPE composites. Fourier transform infrared (FTIR) spectra revealed that some NMA was covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp–UPE composites revealed that treatment of hemp fibers with NMA greatly improved the interfacial adhesion between hemp fibers and UPE. The chemical reactions between hemp fibers and NMA as well as the mechanism of improving the interfacial adhesion were proposed and discussed. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Abstract

Effects of surface treatments on the strength and water resistance of kenaf fiber-reinforced unsaturated polyester (UPE) composites were investigated. A new coupling agent that consists of 1,6-diisocyanato-hexane (DIH) and 2-hydroxylethyl acrylate (HEA) was investigated for surface treatments of kenaf fibers. The surface treatments were found to significantly enhance the tensile strength, modulus of rupture, modulus of elasticity, and water resistance of the resulting kenaf–UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed that DIH-HEA was covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed that chemical treatment of kenaf fibers with a combination of DIH and HEA improved the interfacial adhesion between kenaf fibers and UPE resin in the DIH–HEA-treated kenaf–UPE composites. The mechanisms by which the chemical treatment of kenaf fiber surfaces improved strength and water resistance of the resulting kenaf–UPE composites were discussed.  相似文献   

4.
Kenaf fiber‐reinforced unsaturated polyester (UPE) composites were prepared by compression molding. A novel compatibilizer was prepared from melamine, formaldehyde, and acrylamide. The treatment of kenaf fibers with the compatibilizer significantly increased the flexural properties and reduced the water uptake of the resulting kenaf–UPE composites. The effects of the total solids content, the molar ratios of melamine/formaldehyde/acrylamide, and the pH value of the compatibilizer solution in the treatment of kenaf fibers on the flexural strength, flexural modulus, as well as the water uptake of the kenaf–UPE composites were studied in detail. Fourier transform infrared spectra revealed that the compatibilizer was covalently bonded to kenaf fibers. Scanning electron microscopy images of the fractured kenaf–UPE composites confirmed that the treatment of kenaf fibers with the compatibilizer improved the interfacial adhesion between kenaf fibers and UPE resin. The mechanisms for the improved flexural properties and the reduced water uptake by the treatments of the kenaf fibers were proposed and discussed. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

5.
Biocomposites were made with nonwoven hemp mats and unsaturated polyester resin (UPE). The hemp fiber volume fraction was optimized by mechanical testing. The effect of four surface treatments of industrial hemp fibers on mechanical and thermal properties of biocomposites was studied. The treatments done were alkali treatment, silane treatment, UPE (matrix) treatment, and acrylonitrile treatment. Bending strength, modulus of elasticity, tensile strength, tensile modulus, impact strength, storage modulus, loss modulus, and tan δ were evaluated and compared for all composites. The mechanical as well as thermal properties of the biocomposites improved after surface treatments. The properties of the above biocomposites were also compared with E‐glass–mat composite. To achieve balance in properties, a hybrid composite of industrial hemp and glass fibers was made. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1055–1068, 2006  相似文献   

6.
In order to enhance the interfacial adhesion between wood fiber and an unsaturated polyester matrix (UPE), acrylic acid (acrylic acid)/poly(methyl methacrylate), and (acrylic acid)/silanization (AAS) were used to treat the wood fibers. The mechanical properties and the impact fracture surfaces of the prepared composites were measured and characterized, and the fracture mechanism of these kinds of composites was analyzed. The results showed that the AAS composites possessed the optimum comprehensive mechanical properties. When the weight fraction of wood fiber was 16%, the flexural strength and flexural modulus of the AAS composites were increased by 28.9 and 51.8%, respectively, compared to those of untreated composites. The highest tensile strength and lowest water absorption were also noted for AAS composites. These composites possessed the strongest interfacial adhesion between wood fiber and the UPE matrix. J. VINYL ADDIT. TECHNOL., 19:18–24, 2013. © 2013 Society of Plastics Engineers  相似文献   

7.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

8.
In this work, polyamide 66 (PA66) and its composites with multiwalled carbon nanotubes (MWNTs) were melt spun into fibers at different draw ratios. PA66 fibers at high draw ratio demonstrate a 40% increase in tensile strength, 66% increase in modulus and a considerable increase in toughness. It is demonstrated that this reinforcement can be mainly attributed to high‐draw‐ratio‐induced good dispersion and orientation of MWNTs, particularly the enhanced interfacial adhesion between MWNT and matrix thanks to interfacial crystallization. Our work provides a simple but efficient method to achieve good dispersion and strong interfacial interaction through melt spinning. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
The effects of applying titanate (TYZOR® TPT) and silane (DYNASYLAN VTMO) coupling agents to wet ground muscovite mica in nylon‐6 composites are described. Nylon‐6 composites of 5–40 wt % filler loadings were compounded using an APV Baker twin‐screw extruder. Mica (25 wt %) brought about an increase in the Young's modulus, flexural strength, and flexural modulus but did not produce significant variations in tensile and impact strength. Hence different coupling agents were employed. It was observed that titanate coupling agent improved the tensile strength and the Young's modulus of the composites much while the impact properties were enhanced by the silane coupling agent. An attempt was made to use ?‐caprolactum in improving the interfacial adhesion of the filler and the matrix. It was observed that ?‐caprolactum improved the flexural modulus of the composites most. The effect of coupling agents on the dielectric strength, heat distortion temperature, and morphology were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4074–4081, 2006  相似文献   

10.
Silane‐grafted polypropylene manufactured by a reactive grafting process was used as the coupling agent in polypropylene/glass‐fiber composites to improve the interaction of the interfacial regions. Polypropylene reinforced with 30% by weight of short glass fibers was injection‐molded and the mechanical behaviors were investigated. The results indicate that the mechanical properties (tensile strength, tensile modulus, flexural strength, flexural modulus, and Izod impact strength) of the composite increased remarkably as compared with the noncoupled glass fiber/polypropylene. SEM of the fracture surfaces of the coupled composites shows a good adhesion at the fiber/matrix interface: The fibers are coated with matrix polymer, and a matrix transition region exists near the fibers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1537–1542, 1999  相似文献   

11.
We modified polyimide (PI) fibers by a novel hydrolysis approach and fabricated PI‐fiber‐reinforced novolac resin (NR) composites with enhanced mechanical properties. We first used an alkaline–solvent mixture containing potassium hydroxide liquor and dimethylacetamide (DMAc) for the surface modification of the PI fibers. The results indicate that the surface roughness and structure of the PI fibers were controlled by the hydrolysis time and the content of DMAc. With the optimized hydrolysis conditions, the tensile modulus of modified PI fibers improved 15% without compromises in the fracture stress, fracture strain, or thermal stability. The interfacial shear strength between the modified PI fibers and NR increased 57%; this indicated a highly enhanced interfacial adhesion. Finally, the tensile and flexural strengths of the composites increased 72 and 53%, respectively. This research provides an effective method for the surface modification of PI fibers and expands their applications for high‐performance composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46595.  相似文献   

12.
In this study, glass fibers were modified using γ‐glycidoxypropyltrimethoxysilane of different concentrations to improve the interfacial adhesion at interfaces between fibers and matrix. Effects of γ‐glycidoxypropyltrimethoxysilane on mechanical properties and fracture behavior of glass fiber/epoxy composites were investigated experimentally. Mechanical properties of the composites have been investigated by tensile tests, short beam tests, and flexural tests. The short‐beam method was used to measure the interlaminar shear strength (ILSS) of laminates. The tensile and flexural properties of composites were characterized by tensile and three‐point bending tests, respectively. The fracture surfaces of the composites were observed with a scanning electron microscope. On comparing the results obtained for the different concentrations of silane solution, it was found that the 0.5% GPS silane treatment provided the best mechanical properties. The ILSS value of heat‐cleaned glass fiber reinforced composite is enhanced by ∼59% as a result of the glass fiber treatment with 0.5% γ‐GPS. Also, an improvement of about 37% in tensile strength, about 78% in flexural strength of the composite with the 0.5% γ‐GPS treatment of glass fibers was observed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
This paper aims to evaluate the potential of totally bioresorbable composites as cardiovascular stent material. Copolymers were synthesized by ring‐opening polymerization of L ‐lactide (LLA) and 1,3‐trimethylene carbonate (TMC) with LLA‐TMC ratios of 3/1, 4/1, and 5/1 and characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Wt. 5% of poly(L ‐lactide)‐co‐(glycolide) (PLGA) fibers are used to reinforce PTMC‐LLA copolymer matrices to prepare totally bioresorbable composites. Heat treatment under vacuum and oxygen plasma treatment are applied to improve the mechanical performance of the composites in terms of eliminating the imperfections inside, enhancing interfacial affinity, surface roughness, and enriching surface oxidative chemical bonds. After plasma treatment, the viscosity and tensile strength of the fibers decrease, but the surface chemical bonds are enriched and surface roughness is increased. The composites with 15‐min plasma‐treated fibers and 2 h heat treatment exhibit the highest tensile strength of 46 MPa, i.e., very close to that of PLLA (48 MPa), which is usually used as biodegradable stent material. Moreover, the tensile modulus of the above composite is 1711 MPa, which is only 34% of PLLA's modulus (4985 MPa). Therefore, novel composites with sufficient tensile strength and better flexibility are obtained as promising cardiovascular stent material. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
In recent years, environmentally friendly materials have become popular because of the growing environmental demands in human society. Natural fibers are now widely used as reinforcements in polymer matrix composites for their various advantages such as low cost, light weight, abundant resources, and biodegradability. However, the applications of these kinds of composites are limited because of their unsatisfactory mechanical properties, which are caused by the poor interfacial compatibility between the fibers and the thermoplastic matrix. In this paper, three methods, including (i) alkali treatment, (ii) alkali and methyl methacrylate (MMA) treatment, and (iii) alkali and polyamide (PA) treatment (APT), were used to treat jute fibers and improve the interfacial adhesion of jute‐fiber‐reinforced polypropylene (PP) composites (JPCs). The mechanical properties of the JPCs were tested, and their impact fracture surfaces were observed. Infrared spectral analysis showed that MMA was grafted and that PA was coated onto the surface of jute fibers. Mechanical tests indicated that the three kinds of pretreated composites presented better mechanical properties than untreated composites. Among them, the APT composite had the best comprehensive properties. Compared with untreated composites, the tensile strength, flexural strength, and flexural modulus of APT composite were increased by 24.8, 31.3, and 28.4%, respectively. Analysis by scanning electron microscopy showed that better interfacial compatibility between jute fibers and PP occured in this kind of composite. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
In some technical areas, mainly in the automotive industry, glass fiber reinforced polymers are intended to be replaced by natural fiber reinforced polymer systems. Therefore, higher requirements will be imposed to the physical fiber properties, fiber‐matrix adhesion, and the quality assurance. To improve the properties of epoxy resins (EP) and polypropylene (PP) composites, flax and hemp fibers were modified by mercerization and MAH‐PP coupling agent was used for preparing the PP composites. The effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I–II lattice conversion. It was observed that the mechanical properties of the fibers can be controlled in a broad range by using appropriate mercerization parameters. Unidirectional EP composites were manufactured by the filament winding technique; at the PP matrix material, a combination with a film‐stacking technique was used. The influence of mercerization parameters on the properties of EP composites was studied with hemp yarn as an example. Different macromechanical effects are shown at hemp‐ and flax‐PP model composites with mercerized, MAH‐PP‐treated, or MAH‐PP‐treated mercerized yarns. The composites' properties were verified by tensile and flexural tests. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2150–2156, 2004  相似文献   

16.
Poly(butylene succinate) (PBS) filled kenaf bast fiber (KBF) composites were fabricated via compression molding. The effects of KBF loading on the flexural and impact properties of the composites were investigated for fiber loadings of 10–40 wt %. The optimum flexural strength of the composites was achieved at 30 wt % fiber loading. However, the flexural modulus of the composites kept increasing with increasing fiber loading. Increasing the fiber loading led to a drop in the impact strength of about 57.5–73.6%; this was due to the stiff nature of the KBF. The effect of the fiber length (5, 10, 15, and 20 mm) on the flexural and impact properties was investigated for the 30 wt % KBF loaded composites. The composites with 10‐mm KBF showed the highest flexural and impact properties in comparison to the others. The inferior flexural and impact strength of the composites with 15‐ and 20‐mm KBF could be attributed to the relatively longer fibers that underwent fiber attrition during compounding, which consequently led to the deterioration of the fiber. This was proven by analyses of the fiber length, diameter, and aspect ratio. The addition of maleated PBS as a compatibilizer resulted in the enhancement of the composite's flexural and impact properties due to the formation of better fiber–matrix interfacial adhesion. This was proven by scanning electron microscopy observations of the composites' fracture surfaces. The removal of unreacted maleic anhydride and dicumyl peroxide residuals from the compatibilizers led to better fiber–matrix interfacial adhesion and a slightly enhanced composite strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

18.
Composites were prepared with chemically modified banana fibers in polypropylene (PP). The effects of 40‐mm fiber loading and resin modification on the physical, mechanical, thermal, and morphological properties of the composites were evaluated with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Infrared (IR) spectroscopy, and so on. Maleic anhydride grafted polypropylene (MA‐g‐PP) compatibilizer was used to improve the fiber‐matrix adhesion. SEM studies carried out on fractured specimens indicated poor dispersion in the unmodified fiber composites and improved adhesion and uniform dispersion in the treated composites. A fiber loading of 15 vol % in the treated composites was optimum, with maximum mechanical properties and thermal stability evident. The composite with 5% MA‐g‐PP concentration at a 15% fiber volume showed an 80% increase in impact strength, a 48% increase in flexural strength, a 125% increase in flexural modulus, a 33% increase in tensile strength, and an 82% increase in tensile modulus, whereas the heat deflection temperature increased by 18°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Miscanthus fibers reinforced biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) matrix‐based biocomposites were produced by melt processing. The performances of the produced PBAT/miscanthus composites were evaluated by means of mechanical, thermal, and morphological analysis. Compared to neat PBAT, the flexural strength, flexural modulus, storage modulus, and tensile modulus were increased after the addition of miscanthus fibers into the PBAT matrix. These improvements were attributed to the strong reinforcing effect of miscanthus fibers. The polarity difference between the PBAT matrix and the miscanthus fibers leads to weak interaction between the phases in the resulting composites. This weak interaction was evidenced in the impact strength and tensile strength of the uncompatibilized PBAT composites. Therefore, maleic anhydride (MAH)‐grafted PBAT was prepared as compatibilizer by melt free radical grafting reaction. The MAH grafting on the PBAT was confirmed by Fourier transform infrared spectroscopy. The interfacial bonding between the miscanthus fibers and PBAT was improved with the addition of 5 wt % of MAH‐grafted PBAT (MAH‐g‐PBAT) compatibilizer. The improved interaction between the PBAT and the miscanthus fiber was corroborated with mechanical and morphological properties. The compatibilized PBAT composite with 40 wt % miscanthus fibers exhibited an average heat deflection temperature of 81 °C, notched Izod impact strength of 184 J/m, tensile strength of 19.4 MPa, and flexural strength of 22 MPa. From the scanning electron microscopy analysis, better interaction between the components can be observed in the compatibilized composites, which contribute to enhanced mechanical properties. Overall, the addition of miscanthus fibers into a PBAT matrix showed a significant benefit in terms of economic competitiveness and functional performances. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45448.  相似文献   

20.
Blends of maleated polypropylene (MAPP) with high contents of waste rubber powder, namely ground tire rubber and waste ethylene propylene diene monomer (EPDM) powder, were used as impact modifiers for polypropylene (PP) based composites with different reinforcements (hemp, talc, and milled glass fiber). Adding reinforcements led to increase in modulus (tensile, flexural, and torsion moduli) of PP, while its impact strength decreased noticeably. Impact modification of PP‐based composites was successfully performed via inclusion of MAPP/waste rubber compounds, especially compounds containing waste EPDM powder. Inclusion of such impact modifiers increased impact strength of composites over 80%. The effects of impact modification were more significant for hemp‐ and glass‐filled composites compared to composites containing talc. However, slight decrease in tensile, flexural, and torsion moduli (up to 30%) of the composites was also observed after inclusion of impact modifiers. POLYM. COMPOS., 35:2280–2289, 2014. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号