首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed heat transfer measurements were performed by using 178 thermocouples in a channel with pin fin array. Local heat transfer coefficients and local heat transfer enhancement coefficients were obtained for eight Reynolds numbers ranging from 2000 to 100,000 on the endwall of the channel. The endwall boundary conditions for heat transfer investigation are heating the bottom endwall and heating symmetrically the bottom and top endwalls with constant heat flux. The mechanism of heat transfer enhancement with pin fin array has been discussed. © 2001 Scripta Technica, Heat Trans Asian Res, 30(7): 533–541, 2001  相似文献   

2.
Ever since the rapid increase in both the demand for the miniature electronic devices and their applications, heat dissipation in the electronic components has been a serious issue. A miniature plate‐pin heat sink model with square, circular, and elliptic pins is considered to enhance the hydrothermal performance of this kind of compact heat sink (CHS). Water and 3% of SiO2‐water nanofluids of volume fraction were used with different Reynolds number ranges (100‐1000). The findings show that the base temperature of heat sink reduces while the Nusselt number enhances by using nanofluids and increasing Reynolds number. The lowest value of the base temperature is nearly 25% for the square pins and circular pins CHSs compared with a plate–fin heat sink at 3% of nanofluids. Furthermore, the highest value of the Nusselt number is about 98% at 3% SiO2 for circular pin CHSs compared with the plate–fin heat sink. However, the pressure drop of CHSs is higher than that of plate–fin heat sink. Moreover, the most significant hydrothermal performance value is about 1.44 for water and around 1.51 for SiO2 as using the CHS with circular and elliptic pins depends on the Reynolds number. Thus, applying CHSs with nanofluids instead of the traditional heat sinks might produce a substantial enhancement in the hydrothermal performance of heat sinks.  相似文献   

3.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

4.
This study applied the computational fluid dynamic (CFD) code, ANSYS Fluent for simulating the effect a piezoelectric fan installed inside the rectangular channel by numerical simulation method for transient flow field and investigating the influence of each parameter. To remove the disorganized form of energy from the electronic components, the reversible piezoelectric effect is employed to energize the piezoelectric fan. To observe the variation of fan characteristics and to predict the convective heat transfer coefficient, CFD code ANSYS Fluent 15.0 is used. The numerical simulation parameters included are Nusselt number, number of fins (n = 12 and 14), and counter‐shift (inward and outward‐phase), and distance between the upper portion of the fan tip to the front part of the low thermal reservoir. Numerical analysis was carried out to evaluate the effect of thermal flow fields on the heat sink and piezoelectric fan employed in a flow domain. the results showed that by varying the height from channel bottom to the center of piezoelectric fan improves the performance of the piezoelectric fan, piezoelectric fan swinging in a transient phenomena and also simultaneously influences fluid flow behavior on the heat source surface, the fan vibration at counter‐phase has a better rate of heat transfer than vibration in in‐phase.  相似文献   

5.
Generally, internal micro‐fin tubes are used for increasing the life and performance of electronic devices. The micro‐fins enhance the heat transfer rate by increasing the surface area with an increase of the pressure drop. In this study, heat transfer and pressure drop are analyzed by varying Reynolds number with the increase in the number of fins in tubes. Heat transfer and pressure drop, together with turbulence kinetic energy of micro‐fin tubes (helical and straight) and a smooth tube, have been evaluated for different Reynolds numbers (60 000, 40 000, 20 000, and 2000) at a constant temperature of 350 K, which clearly establishes laminar to turbulent flow. It is observed that the helical micro‐fin tube has a better result compared with the straight micro‐fin tube and smooth tube at Reynolds numbers 60 000, 40 000, and 20 000 at velocity 2, 1, and 0.5 m/s, respectively. This study is an attempt to establish a comparison of different micro‐fin geometries with varying Reynolds numbers, concluding that a high Reynolds number is suitable for the same.  相似文献   

6.
The hydraulic‐thermal characteristics of 3D pinned heat sink designs have been numerically compared as the first part of a three‐part investigation. Five different pin geometries (circular, square, triangular, strip, and elliptic pins) and an unpinned heat sink with three types of nanofluids (Al2O3–H2O, SiO2–H2O, and CuO–H2O) are considered for laminar forced convection. The range of Reynolds number is from 100 to 1000, and volume fractions vary between 0% and 5%. The finite volume method is employed to solve the Navier–Stokes and energy equations by employing a SIMPLE algorithm for a computational solution. Three parameters are presented—the Nusselt number, the bottom temperature, and the hydrothermal performance of the heat sink with pressure drop data. The findings indicated that the overall hydrothermal performance of elliptic‐pinned (EP) heat sinks produces the most substantial value of 3.10 for pure water. For different nanofluids, the SiO2–water nanofluids with EPs have the most significant hydrothermal performance. Also, this factor is enhanced with an increase in nanofluid concentration up to nearly 3.34 for 5% of SiO2–water. Consequently, applying the elliptic‐pinned heat sinks is recommended with pure water for considering an increase in the pressure drop, with 5% of SiO2–water nanofluids, regardless of an enlargement of pressure drop for heat‐dissipation applications.  相似文献   

7.
High-performance compact heat sinks have been developed for the effective cooling of high-density LSI packaging. Heat transfer and pressure loss characteristics of the heat sinks in both air-cross-flow and air-jet cooling have been experimentally studied. The present heat sinks were of plate-fin and pin-fin arrays with a fin pitch of 0.7 mm. The plate-fin heat sinks had higher cooling performance than the pin-fin heat sinks in the range of large airflow rates both in air-cross-flow and air-jet cooling. The thermal conductance in cross-flow cooling was 20 or 40% larger than that in jet cooling. The correlation of Colburn j-factor/Fanning friction factor versus the Reynolds number for the present heat sinks was found to be very close to that of a conventional large-size heat exchanger. © Scripta Technica, Heat Trans Asian Res, 28(8): 687-705, 1999  相似文献   

8.
In order to observe startup characteristics, a vertically installed high‐temperature heat pipe fin was tested. The temperature curves during the startup process are given. It was found that the evaporator bottom temperature in the high‐temperature heat pipe fin with a constant heat input increased very quickly over time. The temperature at the evaporator top and the condenser temperature lagged behind the temperature of the evaporator bottom. The evaporator outlet temperature coincided with the condenser middle temperature. The temperature at the end of the condenser exhibited a phenomenon of temperature pulsation. If the high‐temperature heat pipe fin was placed horizontally for a certain period of time and then tested in its vertical position, the temperature pulsation phenomenon at the condenser disappeared and a good isothermal condition emerged. Further analysis showed that larger heat inputs yielded faster startups and weaker pulsation during the startup period. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(6): 411–416, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20022  相似文献   

9.
Over the past few decades, researchers have shown significant interest in enhancing the thermal efficiency of heat sinks while simultaneously increasing the power generation capacity of electronic devices and reducing their size. In this study, the focus lies on the originality of employing conical perforated pin heat sinks with multiple perforations (N = 0, 1, 2, and 3) and various conical pins inclination angles (Φ = 0°, 1°, 2°, 3°, and 4°). The study aimed to numerically investigate the effects of a perforated conical pin and cone inclination angle on heat transfer, pressure drop, CPU temperature, and hydrothermal performance (HTP) across the heat sinks using a three-dimensional, turbulent flow as k–ω SST model combined with the thermal conjugate model. A validated CFD model is employed to conduct a parametric analysis of the effects of the quantity and placement of circular holes. A summary of the results reveals that Model B3 exhibited the highest HTP value, reaching approximately 1.15 at U = 10 m/s, with a commendable reduction in heat sink mass of over 18%. Ultimately, the perforated conical pin heat sink demonstrates the potential to fulfill the primary objective of this investigation, which is achieving an overall improvement in Nusselt number, CPU temperature, pressure drop, and reduced heat sink mass.  相似文献   

10.
In the present work, thermal analysis and design optimization of tapered pin fin subjected to variable surface heat transfer coefficient have been numerically carried out. It is well known that heat is transferred through the fin by conduction along its length and dissipated from the fin surface via natural convection to the ambient. The thermal analysis and the optimum dimension were carried out using finite element (FE) modeling software ANSYS-17.2. The thermal performance of the tapered pin fin has been studied over a wide range of physical dimensions. In addition, the effect of base to tip surface heat transfer coefficient ratio (ε) on the fin performance is evaluated. It was found that the effect of variable heat transfer coefficient has a significant impact on the fin efficiency. The rate of increase of fin efficiency was lower in the low as well as in high range of ε, meanwhile, it was steeper in the intermediate range of ε. It was also observed that the optimal values of the heat dissipation were higher for lower values of ε at the same conditions.  相似文献   

11.
This study investigates the performance of existing central processing unit (CPU) heat exchangers and compares it with aluminium‐foam heat exchangers in natural convection using an industrial set‐up. Kapton flexible heaters are used to replicate the heat produced by a computer's CPU. A number of thermocouples are connected between the heater and the heat sink being used to measure the component's temperature. The thermocouples are also connected to a data‐acquisition card to collect the data using LabVIEW program. The values obtained for traditional heat exchangers are compared to published data to validate experiments and set‐up. The validated set‐up was then utilized to test the aluminium‐foam heat exchangers and compare its performance to that of common heat sinks. It is found that thermal resistance is reduced more than 70% by employing aluminium‐foam CPU heat exchangers. The results demonstrate that this material provides an advantage on thermal dissipation under natural convection over most available technologies, as it considerably increases the surface‐area‐to‐volume ratio. Furthermore, the aluminium‐foam heat exchangers reduce the overall weight. Copyright © 2005 John wiley & Sons, Ltd.  相似文献   

12.
In the present work, a multiobjective heat transfer search (MOHTS) algorithm is proposed and investigated for thermo‐economic and thermodynamic optimization of a plate–fin heat exchanger (PFHX). Heat exchanger effectiveness and total annual cost (TAC) are considered as thermo‐economic objective functions. Similarly, entropy generation rate and heat exchanger effectiveness are considered as thermodynamic objective functions. Six design variables including flow length of cold and hot streams, no flow length, fin height, fin pitch, and fin offset length are considered as decision variables. Effectiveness and accuracy of the proposed algorithm are evaluated by analyzing application examples of a PFHX. The results obtained using the proposed algorithm for thermo‐economic considerations are compared with the available results of NSGA‐II and TLBO in the literature. Results show that 3.56% to 10.29% reductions in TAC with 0.48% to 0.81% higher effectiveness are observed using the proposed approach compared to TLBO and NSGA‐II approaches. Additionally, the distribution of each design variable in its allowable range is also shown for thermo‐economic consideration to identify the level of conflict on objective functions. The sensitivity analyses of design variables on the objective functions value are also performed in detail.  相似文献   

13.
The transient heat transfer in a heat‐generating fin with simultaneous surface convection and radiation is studied numerically for a step change in base temperature. The convection heat transfer coefficient is assumed to be a power law function of the local temperature difference between the fin and its surrounding fluid. The values of the power exponent n are chosen to include simulation of natural convection (laminar and turbulent) and nucleate boiling among other convective heat transfer modes. The fin is assumed to have uniform internal heat generation. The transient response of the fin depends on the convection‐conduction parameter, radiation‐conduction parameter, heat generation parameter, power exponent, and the dimensionless sink temperature. The instantaneous heat transfer characteristics such as the base heat transfer, surface heat loss, and energy stored are reported for a range of values of these parameters. When the internal heat generation exceeds a threshold the fin acts as a heat sink instead of a heat source. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21012  相似文献   

14.
The effects of different distributor configurations on the flow distribution in plate‐fin heat exchangers were studied. It was found that an irrational distributor configuration would lead to the flow maldistribution and a different degree of non‐uniformity of the flow distribution in the transverse and longitudinal directions. The distributor configuration and Reynolds number are the main factors affecting the flow distribution. An improved distributor configuration with a fluid complementary cavity has been brought forward. The experimental results showed that the improved distributor configuration can effectively improve the performance of flow distribution in heat exchangers. The best performance of flow distribution was obtained at h/H = 0.2. The correlations between the flow maldistribution characteristic and the flow Reynolds number for different distributor configurations were deduced according to the experimental data. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(6): 402–410, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20023  相似文献   

15.
Heat transfer analysis of lateral perforated fin heat sinks   总被引:1,自引:0,他引:1  
In this article fluid flow and conjugate conduction-convective heat transfer from a three-dimensional array of rectangular perforated fins with square windows that are arranged in lateral surface of fins are studied numerically. For investigation, Navier–Stokes equations and RNG based k  ε turbulent model are used. Finite volume procedure with SIMPLE algorithm is applied to coupled differential equations for both solid and gas phases. Computations are carried out for Reynolds numbers of 2000–5000 based on the fin thickness and Pr = 0.71. Numerical model is first validated with previous experimental studies and good agreement were observed. Based on a valid numerical model, numerical solution is made to find fluid flow and temperature distribution for various arrangements. For each type, fin efficiency of perforated fins is determined and compared with the equivalent solid fin. Results show that new perforated fins have higher total heat transfer and considerable weight reduction in comparison with solid fins.  相似文献   

16.
Heat transfer augmentation study using air jet impingement has recently attained great interest toward electronic packaging systems and material processing industries. The present study aims at developing a nondimensional semiempirical relation, which represents the cooling rate (Nu) in terms of different geometric and impinging parameters. The spacing of the fin (S/dp) and the fin heights (H/dp) are the geometric parameters, while the impinging Reynolds number (Re) and nozzle‐target spacing (Z/d) are the impinging parameters. During the plot of the Nusselt profile, three vital secondary peaks are observed due to local turbulence of air over the heat sink. To incorporate this nonlinear behavior of the Nusselt profile in developing nondimensional empirical relations, the Nusselt profiles are divided into different regions of secondary rise and fall. Four different sets of the semiempirical relation using regression analysis are proposed for Z/d ≤ 6, H/dp ≤ 4.8 with S/dp ≤ 1.58, S/dp > 1.58 and for Z/d > 6, H/dp > 4.8 with S/dp ≤ 1.58, S/dp > 1.58. These empirical relations benefit the evaluation of the cooling rate (Nu) without any experimentation or simulation.  相似文献   

17.
Metal hydrides are promising means for compact hydrogen storage. However, the poor heat transfer in the tank packed with metal hydride powders often hinders the system from charging or discharging hydrogen effectively. In this investigation, a tube‐fin heat exchanger is supposed to be inserted to the tank, and an optimization problem accounting for both heat transfer enhancement and cost is formulated. We solve the problem with approximate analytical methods, and the influences of fin geometry are discussed. The comparison results support using quadratic curve‐shaped fins, whose effectiveness is also proved by the numerical simulation results. Furthermore, a novel multilayer fin structure with varying width is proposed, and the key parameters of it are discussed, including the number and the arrangement of fins. This paper is expected to provide new insights for the heat transfer enhancement design of hydride‐based hydrogen storage system.  相似文献   

18.
19.
利用低气压环境模拟装置对开缝翅片管换热器在不同气压下的换热性能进行实验研究.研究结果表明:随着气压不断降低,换热器周围空气密度逐渐降低,换热器空气侧换热系数以及显热换热量逐渐降低,而空气含湿量随着气压降低逐渐升高,导致潜热换热量逐渐增加;当气压降至0.058 MPa以下时,换热器空气侧潜热换热量占主要部分,当气压为0.04 MPa时,换热器换热能力与常压下相比下降了36.63%.  相似文献   

20.
A thermal‐economic analysis of a transcritical Rankine power cycle with reheat enhancement using a low‐grade industrial waste heat is presented. Under the identical operating conditions, the reheat cycle is compared to the non‐reheat baseline cycle with respect to the specific net power output, the thermal efficiency, the heat exchanger area, and the total capital costs of the systems. Detailed parametric effects are investigated in order to maximize the cycle performance and minimize the system unit cost per net work output. The main results show that the value of the optimum reheat pressure maximizing the specific net work output is approximately equal to the one that causes the same expansion ratio across each stage turbine. Relative performance improvement by reheat process over the baseline is augmented with an increase of the high pressure but a decrease of the turbine inlet temperature. Enhancement for the specific net work output is more significant than that for the thermal efficiency under each condition, because total heat input is increased in the reheat cycle for the reheat process. The economic analysis reveals that the respective optimal high pressures minimizing the unit heat exchanger area and system cost are much lower than that maximizing the energy performance. The comparative analysis identifies the range of operating conditions when the proposed reheat cycle is more cost effective than the baseline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号