首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies and develops efficient traffic management techniques for downlink transmission at the base station (BS) of multi‐service IP‐based networks by combining quality‐of‐service (QoS) provision and opportunistic wireless resource allocation. A delay‐margin‐based scheduling (DMS) for downlink traffic flows based on the delays that each packet has experienced up to the BS is proposed. The instantaneous delay margin, represented by the difference between the required and instantaneous delays, quantifies how urgent the packet is, and thus it can determine the queuing priority that should be given to the packet. The proposed DMS is further integrated with the opportunistic scheduling (OPS) to develop various queueing architectures to increase the wireless channel bandwidth efficiency. Different proposed integration approaches are investigated and compared in terms of delay outage probability and wireless channel bandwidth efficiency by simulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a study of a cross‐layer design through joint optimization of spectrum allocation and power control for cognitive radio networks (CRNs). The spectrum of interest is divided into independent channels licensed to a set of primary users (PUs). The secondary users are activated only if the transmissions do not cause excessive interference to PUs. In particular, this paper studies the downlink channel assignment and power control in a CRN with the coexistence of PUs and secondary users. The objective was to maximize the total throughput of a CRN. A mathematical model is presented and subsequently formulated as a binary integer programming problem, which belongs to the class of non‐deterministic polynomial‐time hard problems. Subsequently, we develop a distributed algorithm to obtain sub‐optimal results with lower computational complexity. The distributed algorithm iteratively improves the network throughput, which consists of several modules including maximum power calculation, excluded channel sets recording, base station throughput estimation, base station sorting, and channel usage implementation. Through investigating the impacts of the different parameters, simulation results demonstrates that the distributed algorithm can achieve a better performance than two other schemes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A mobile ad hoc network (MANET) is a self‐organized and adaptive wireless network formed by dynamically gathering mobile nodes. Since the topology of the network is constantly changing, the issue of routing packets and energy conservation become challenging tasks. In this paper, we propose a cross‐layer design that jointly considers routing and topology control taking mobility and interference into account for MANETs. We called the proposed protocol as Mobility‐aware Routing and Interference‐aware Topology control (MRIT) protocol. The main objective of the proposed protocol is to increase the network lifetime, reduce energy consumption, and find stable end‐to‐end routes for MANETs. We evaluate the performance of the proposed protocol by comprehensively simulating a set of random MANET environments. The results show that the proposed protocol reduces energy consumption rate, end‐to‐end delay, interference while preserving throughput and network connectivity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a cross‐layer analytical framework is proposed to analyze the throughput and packet delay of a two‐hop wireless link in wireless mesh network (WMN). It considers the adaptive modulation and coding (AMC) process in physical layer and the traffic queuing process in upper layers, taking into account the traffic distribution changes at the output node of each link due to the AMC process therein. Firstly, we model the wireless fading channel and the corresponding AMC process as a finite state Markov chain (FSMC) serving system. Then, a method is proposed to calculate the steady‐state output traffic of each node. Based on this, we derive a modified queuing FSMC model for the relay to gateway link, which consists of a relayed non‐Poisson traffic and an originated Poisson traffic, thus to evaluate the throughput at the mesh gateway. This analytical framework is verified by numerical simulations, and is easy to extend to multi‐hop links. Furthermore, based on the above proposed cross‐layer framework, we consider the problem of optimal power and bandwidth allocation for QoS‐guaranteed services in a two‐hop wireless link, where the total power and bandwidth resources are both sum‐constrained. Secondly, the practical optimal power allocation algorithm and optimal bandwidth allocation algorithm are presented separately. Then, the problem of joint power and bandwidth allocation is analyzed and an iterative algorithm is proposed to solve the problem in a simple way. Finally, numerical simulations are given to evaluate their performances. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we identify the most prominent problems of wireless multimedia networking and present several state‐of‐the‐art solutions with a focus on energy efficiency. Three key problems in networked wireless multimedia systems are: (1) the need to maintain a minimum quality of service over time‐varying channels; (2) to operate with limited energy resources; and (3) to operate in a heterogeneous environment. We identify two main principles to solve these problems. The first principle is that energy efficiency should involve all layers of the system. Second, Quality of Service is an essential mechanism for mobile multimedia systems not only to give users an adequate level of service, but also as a tool to achieve an energy‐efficient system. Owing to the dynamic wireless environment, adaptability of the system will be a key issue in achieving this. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In order to support the quality‐of‐service (QoS) requirements for real‐time traffic over broadband wireless networks, advanced techniques such as space‐time diversity (STD) and multicarrier direct‐sequence code division multiple access (MC‐DS‐CDMA) are implemented at the physical layer. However, the employment of such techniques evidently affects the QoS provisioning algorithms at the medium access control (MAC) layer. In this paper, we propose a space‐time infrastructure and develop a set of cross‐layer real‐time QoS‐provisioning algorithms for admission control, scheduling, and subchannel‐allocations. We analytically map the parameters characterizing the STD onto the admission‐control region guaranteeing the real‐time QoS. Our analytical analyses show that the proposed algorithms can effectively support real‐time QoS provisioning. Also presented are numerical solutions and simulation results showing that the STD can significantly improve the QoS provisioning for real‐time services over wireless networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we propose an optimization of MAC protocol design for wireless sensor networks, that accounts for cross‐layering information, in terms of location accuracy for nodes and residual energy levels. In our proposed solution we encode this cross‐layer information within a decreasing backoff function in the MAC. The protocol is optimized by appropriately selecting priority window lengths, and we have shown that accurate cross‐layer information plays a crucial role in achieving an optimal performance at the MAC layer level. The estimation accuracy can be characterized spatially using a location reliability probability distribution function. We show that this distribution function greatly influences the design of the optimal backoff window parameters, and the overall throughput performance of the MAC protocol. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the cross‐layer optimal design of multihop ad hoc network employing full‐duplex cognitive radios (CRs) is investigated. Firstly, the analytical expressions of cooperative spectrum sensing performance for multihop CR networks over composite fading channels are derived. Then, the opportunistic throughput and transmit power of CRs are presented based on the derivation of false alarm and missed detection probability. Finally, a multiobjective optimization model is proposed to maximize the opportunistic throughputs and minimize the transmitting power. Simulation results indicate that Pareto optimal solution of sensing duration, decision threshold, and transmit power can be achieved by cross‐layer multiobjective optimization, it can balance the conflicts between different objective functions and reap the acceptable outcomes for multihop CR network.  相似文献   

9.
This paper proposes a new cross‐layer optimization algorithm for wireless mesh networks (WMNs). CDMA/TDD (code division multiple access/time division duplex) is utilized and a couple of TDD timeslot scheduling schemes are proposed for the mesh network backbone. Cross‐layer optimization involves simultaneous consideration of the signal to interference‐plus‐noise ratio (SINR) at the physical layer, traffic load estimation and allocation at medium access control (MAC) layer, and routing decision at the network layer. Adaptive antennas are utilized by the wireless mesh routers to take advantage of directional beamforming. The optimization formulation is subject to routing constraints and can be solved by general nonlinear optimization techniques. Comparisons are made with respect to the classic shortest‐path routing algorithm in the network layer. The results reveal that the average end‐to‐end successful packet rate (SPR) can be significantly improved by the cross‐layer approach. The corresponding optimized routing decisions are able to reduce the traffic congestion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
To solve the problem that the QoS optimization schemes which based on heuristic algorithm degraded often due to the mismatch between parameters and network characteristics in software-defined networking scenarios,a software-defined networking QoS optimization algorithm based on deep reinforcement learning was proposed.Firstly,the network resources and state information were integrated into the network model,and then the flow perception capability was improved by the long short-term memory,and finally the dynamic flow scheduling strategy,which satisfied the specific QoS objectives,were generated in combination with deep reinforcement learning.The experimental results show that,compared with the existing algorithms,the proposed algorithm not only ensures the end-to-end delay and packet loss rate,but also improves the network load balancing by 22.7% and increases the throughput by 8.2%.  相似文献   

11.
There is a plethora of recent research on high performance wireless communications using a cross‐layer approach in that adaptive modulation and coding (AMC) schemes at wireless physical layer are used for combating time varying channel fading and enhance link throughput. However, in a wireless sensor network, transmitting packets over deep fading channel can incur excessive energy consumption due to the usage of stronger forwarding error code (FEC) or more robust modulation mode. To avoid such energy inefficient transmission, a straightforward approach is to temporarily buffer packets when the channel is in deep fading, until the channel quality recovers. Unfortunately, packet buffering may lead to communication latency and buffer overflow, which, in turn, can result in severe degradation in communication performance. Specifically, to improve the buffering approach, we need to address two challenging issues: (1) how long should we buffer the packets? and (2) how to choose the optimum channel transmission threshold above which to transmit the buffered packets? In this paper, by using discrete‐time queuing model, we analyze the effects of Rayleigh fading over AMC‐based communications in a wireless sensor network. We then analytically derive the packet delivery rate and average delay. Guided by these numerical results, we can determine the most energy‐efficient operation modes under different transmission environments. Extensive simulation results have validated the analytical results, and indicates that under these modes, we can achieve as much as 40% reduction in energy dissipation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we propose a cross‐layer optimized geographic node‐disjoint multipath routing algorithm, that is, two‐phase geographic greedy forwarding plus. To optimize the system as a whole, our algorithm is designed on the basis of multiple layers' interactions, taking into account the following. First is the physical layer, where sensor nodes are developed to scavenge the energy from environment, that is, node rechargeable operation (a kind of idle charging process to nodes). Each node can adjust its transmission power depending on its current energy level (the main object for nodes with energy harvesting is to avoid the routing hole when implementing the routing algorithm). Second is the sleep scheduling layer, where an energy‐balanced sleep scheduling scheme, that is, duty cycle (a kind of node sleep schedule that aims at putting the idle listening nodes in the network into sleep state such that the nodes will be awake only when they are needed), and energy‐consumption‐based connected k‐neighborhood is applied to allow sensor nodes to have enough time to recharge energy, which takes nodes' current energy level as the parameter to dynamically schedule nodes to be active or asleep. Third is the routing layer, in which a forwarding node chooses the next‐hop node based on 2‐hop neighbor information rather than 1‐hop. Performance of two‐phase geographic greedy forwarding plus algorithm is evaluated under three different forwarding policies, to meet different application requirements. Our extensive simulations show that by cross‐layer optimization, more shorter paths are found, resulting in shorter average path length, yet without causing much energy consumption. On top of these, a considerable increase of the network sleep rate is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Programming language concepts have inspired some networking design decisions. For example, concepts such as object encapsulation and interface invocation have been borrowed, at the time of their adoption, from an already well established object oriented programming paradigm. The authors suggest in this paper that it may be time again to revisit emerging software engineering programming paradigms to learn from them. More specifically, this paper discusses the practical tangling problem, embedded in conventional layer‐coupling (linking) network software design and highlighted by recent research proposals for cross layer design. The adopted solution is based on the aspect‐oriented programming paradigm. We show its programming efficiency, limitations and role in the seamless enforcement of multiple policy scenarios while emphasizing little design changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A wireless mesh network has been popularly researched as a wireless backbone for Internet access. However, the deployment of wireless mesh networks in unlicensed bands of urban areas is challenging because of interference from external users such as residential access points. We have proposed Urban‐X, which is a first attempt towards multi‐radio cognitive mesh networks in industrial, scientific, and medical bands. Urban‐X first controls network topology with a distributed channel assignment to avoid interference in large timescale. In such a topology, we develop a new link‐layer transmission‐scheduling algorithm together with source rate control as a small‐timescale approach, which exploits receiver diversity when receivers of multi‐flows can have different channel conditions because of varying interference. For this purpose, mesh nodes probe the channel condition of received mesh nodes using group Request to Send and group Clear to Send. In this study, we establish a mathematical Urban‐X model in a cross‐layer architecture, adopting a well‐known network utility maximization framework. We demonstrate the feasibility of our idea using a simulation on the model. Simulation results show improved network throughput from exploiting receiver diversity and distributed channel assignment under varying external user interference. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
With the advent of various emerging wireless products, the usage of limited spectrum has grown exponentially in the recent years. In the next few years, that mobile data traffic globally is expected to grow up to 50 EB/month, which is nearly a five times increase over year 2018. Therefore, it will become extremely difficult to satisfy the ever increasing demand through the current fixed spectrum assignment policy in which spectrum band is exclusively used for the particular applications, and it has also led to underutilization of a significant portion of the spectrum (like TV bands). Cognitive radio networks has emerged as a possible solution for the problem which makes dynamic spectrum access possible for unlicensed user when licensed user is not active. Among various operations of cognitive radio, channel assignment to the unlicensed user is very important. Further, wireless regional area network is one of the most important application of cognitive radio, which provides wireless broadband to the rural area using vacant TV channels. This paper discusses channel assignment techniques considering various functionalities for cognitive radio networks in respect of wireless regional area network in the existing literature. Initially, a comprehensive introduction to both cognitive radio networks and wireless regional area networks is provided, and in the end, the paper summarizes the various issues and research challenges in the channel assignment for wireless regional area networks.  相似文献   

16.
Cross‐layer design is a generic designation for a set of efficient adaptive transmission schemes, across multiple layers of the protocol stack, that are aimed at enhancing the spectral efficiency and increasing the transmission reliability of wireless communication systems. In this paper, one such cross‐layer design scheme that combines physical layer adaptive modulation and coding (AMC) with link layer truncated automatic repeat request (T‐ARQ) is proposed for multiple‐input multiple‐output (MIMO) systems employing orthogonal space‐‐time block coding (OSTBC). The performance of the proposed cross‐layer design is evaluated in terms of achievable average spectral efficiency (ASE), average packet loss rate (PLR) and outage probability, for which analytical expressions are derived, considering transmission over two types of MIMO fading channels, namely, spatially correlated Nakagami‐m fading channels and keyhole Nakagami‐m fading channels. Furthermore, the effects of the maximum number of ARQ retransmissions, numbers of transmit and receive antennas, Nakagami fading parameter and spatial correlation parameters, are studied and discussed based on numerical results and comparisons. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Previous quality‐of‐service (QoS) routing protocols in mobile ad hoc networks (MANETs) determined bandwidth‐satisfied routes for QoS applications. Since the multi‐rate enhancements have been implemented in MANETs, QoS routing protocols should be adapted to exploit them fully. However, existing works suffer from one bandwidth‐violation problem, named the hidden route problem (HRP), which may arise when a new flow is permitted and only the bandwidth consumption of the hosts in the neighborhood of the route is computed. Without considering the bandwidth consumption to ongoing flows is the reason the problem is introduced. This work proposes a routing protocol that can avoid HRP for data rate selection and bandwidth‐satisfied route determination with an efficient cross‐layer design based on the integration of PHY and MAC layers into the network layer. To use bandwidth efficiently, we aim to select the combination of data rates and a route with minimal bandwidth consumption to the network, instead of the strategy adopted in the most previous works by selecting the combination with the shortest total transmission time. Using bandwidth efficiently can increase the number of flows supported by a network. Copyright 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In software‐defined networking (SDN), TCP SYN flooding attack is considered as one of the most effective attacks to perform control plane and target server saturation. In this attack, an attacker generates a large number of malicious SYN requests, and because of the absence of the forwarding rules, the data plane switches have to forward these SYN messages to the controller. This excessive forwarding causes congestion over the communication channel between a data plane and control plane, and it also exhausts computational resources at both the planes. In this paper, we propose a novel countermeasure called SYN‐Guard to detect and prevent SYN flooding in SDN networks. We fully implement SYN‐Guard on the SDN controller to validate the incoming TCP connection requests. The controller installs forwarding rules for the SYN requests that successfully clear the validation test of SYN‐Guard. The host of the fake SYN request is detected, and SYN‐Guard prevents it from sending any further SYN requests to the data plane switch. The performance evaluation done using the simulation results shows that SYN‐Guard exhibits low side effect for genuine TCP requests, and when compared with standard SDN and state‐of‐art proposals, it reduces the average response time up to 21% during an ongoing SYN flooding attack.  相似文献   

19.
Software‐defined networking (SDN) acts as a centralized management unit, especially in a network with devices that operate under the transport layer of the OSI model. However, when a network with layer 7 middleboxes (MBs) is considered, current SDNs exhibit limitations. As such, to achieve a real‐centralized management unit, a new architecture is required that decouples the data and control planes of all network devices. In this report, we propose such a complementary architecture to the current SDN in which SDN‐enabled MBs are included along with contemporary SDN‐enabled switches. The management unit of this architecture improves network performance and reduces routing cost by considering the status of the MBs during flow forwarding. This unit consists of the following two parts: an SDN controller (SDNC) and a middlebox controller (MBC). The latter selects the best MBs for each flow and the former determines the best path according to its routing algorithm and provides information via the MBC. The results show that the proposed architecture improved performance because the utilization of all network devices including MBs is manageable.  相似文献   

20.
In the heterogeneous and unreliable channel environment of cognitive radio ad hoc networks (CRAHNs), a multipath route with channel assigned is preferable in both throughput and reliability. The cross‐layer multipath routing and channel assignment in CRAHNs is becoming a challenging issue. In this paper, this problem is characterized, formulated, and shown to be in the form of mixed integer programming. For this Non‐deterministic Polynomial‐time (NP)‐hard problem, the deficiency of the widely used linearization and sequential fixing algorithm is first analyzed. The main contribution of this paper is the development of a new backtracking algorithm with feasibility checking to search optimal solutions and a heuristic algorithm with high feasible solution‐obtained probability (HHFOP) for distributed application in CRAHNs. Through feasibility checking and solution bounds validating, backtracking algorithm with feasibility checking cuts off unnecessary searching space in early stage without loss of optimal solutions, making it much more efficient than brute searching. For practical application in CRAHNs with polynomial complexity, HHFOP first computes the maximal‐supported throughput through link‐channel assignment and link‐capacity coordination for each candidate path. Then the paths are combined, and the route throughput is optimized. Extensive simulation results demonstrate that HHFOP can achieve a high feasible solution‐obtained probability with little throughput degradation compared with linearization and sequential fixing algorithm, indicating its practicability for distributed applications in CRAHNs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号