首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SF6 gas is widely used in electric power apparatus such as gas‐insulated switchgears (GIS), because of its superior dielectric properties; however, it has been identified as a greenhouse gas at COP3 in 1997, and alternative insulation gases to SF6 have recently been investigated. One of the candidates is CO2 gas, which has lower global warming potential (GWP). However, CO2 gas has a lower withstand voltage level than SF6 gas; therefore, it is necessary to rationalize the equipment insulation level and reexamine the insulating test voltage for electric power apparatus as low as possible. From our previous investigation, in SF6 gas insulation system, we obtained that the insulation requirements of the real surges (called nonstandard lightning impulse waveform) are not as severe as those of the standard lightning impulse waveform. This paper describes the evaluation method for real surges, based on insulation characteristics of CO2 gas gaps. Furthermore, the method was applied to typical field overvoltage waveform in the lightning surge time region for 500‐kV systems and it is obtained that the equivalent peak value of the standard lightning impulse waveform is possibly reduced by 10 to 15%. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 163(3): 1– 9, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20560  相似文献   

2.
To lower the insulation specifications (specifically, the lightning impulse withstand voltage) of a gas insulated switchgear (GIS) and thus cut the equipment cost while maintaining the high reliability of its insulation performance, it is necessary to define in an organized way the insulation characteristics for non-standard lightning impulse voltage waveforms that represent actual surge waveforms in the field and compare them with the characteristics for the standard lightning impulse waveform quantitatively. In the preceding paper, lightning surge waveforms and disconnector switching surge waveforms at UHV, 500 kV, and 275 kV substations were analyzed and five to six non-standard lightning surge waveforms with basic frequencies of 0.6 to 5.0 MHz were identified. In this paper, the dielectric breakdown voltage - time characteristics were measured under several different conditions mainly for the quasi-uniform SF6 gas gaps that represent an insulation element of a GIS toward four kinds of non-standard lightning impulse waveforms associated with lightning surges. As a result, in the tested range, the dielectric breakdown values for nonstandard lightning impulse waveforms were higher than for the standard lightning impulse waveform by 3% to 32%.  相似文献   

3.
The waveform of a standard lightning impulse differs greatly from those of actual lightning surges acting on GIS. This raises the problem of the equivalence of the standard lightning impulse. This report describes the effect of voltage waveforms on insulating performance in an SF6 gas gap subjected to fast oscillating impulse voltages simulating actual lightning surges, and the evaluation of V-t characteristics by applying the equal area criterion. © 1997 Scripta Technica, Inc. Electr Eng Jpn, 119(4): 1–11, 1997  相似文献   

4.
Until recently, SF6 gas has widely been used as the best insulating medium in substation equipment. However, SF6 gas was specified to be a greenhouse gas at COP3 in 1997 because of its high global warming potential (GWP), and alternative insulation gases to SF6 have been sought for a long time. Alternatives using the natural gases are considered to be suitable, but none of them show better properties for insulation as well as good environmental compatibility. Therefore, it is necessary to rationalize the equipment insulation level and reduce the test voltage of electric power apparatus to as low a level as possible. The actual lightning surge waveform (so‐called nonstandard lightning impulse waveform) occurring in the actual field is different from the standard lightning impulse waveform (1.2/50 μs). There are many cases in which the actual lightning surge waveform has a steep rise and large decay of overvoltage, and the insulation requirements are not as severe as those for the standard lightning impulse waveform. In this paper, we focused our research on N2 gas as an SF6 substitute and investigated the insulation characteristics of N2 gas for a single‐frequency oscillatory waveform with various frequencies from 2.7 to 20.0 MHz and damping ratios. Based on the experimental results, it might be possible to reduce the test voltage of N2 gas insulation by evaluating the crest value of the actual lightning surge waveform that has been converted into an equivalent standard lightning impulse waveform. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(2): 10–20, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20754  相似文献   

5.
To achieve a rational insulation design for transformers, it is important to evaluate dielectric strength against surges actually impinging on equipment on‐site. This paper deals with the breakdown voltage characteristics of an oil gap under nonstandard lightning surge waveforms combined with oscillatory voltages. It is found that the breakdown voltages of the oil gap under nonstandard impulse waveforms are higher than standard lightning impulse voltages. The results can be ascribed to V–t characteristics of the oil gap in short‐time impulse voltage ranges. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(3): 39–45, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10229  相似文献   

6.
Gas‐insulated switchgear (GIS) is subjected to very fast transient overvoltages such as lightning surges or disconnector switching surges. Therefore, the sparkover voltage and time (V?t) characteristics of SF6 in a very short time range of less than are of great interest from the viewpoint of insulation design and coordination for a GIS. This paper describes the V?t characteristics of SF6 at a gas pressure of 0.5 MPa using a steep‐front square impulse voltage under a quasi‐uniform field gap and presents a quantitative evaluation of the V?t characteristics for a nonstandard lightning impulse voltage. In the case of a square impulse, the V?t characteristics of positive polarity were observed to be almost flat over a long time range from 80 ns to , and rose steeply over a short time range from 80 ns down to 20 ns. For negative polarity, the V?t characteristics exhibit a gentle rise from 200 ns down to 40 ns. In the estimation of V?t characteristics, the equal‐area criterion parameters were quantitatively estimated using the square impulse. For a nonstandard lighting impulse, we found that application of the equal‐area criterion with these parameters for the nonoscillating impulse and oscillating impulse of up to 5.3 MHz as a model of lightning surge and disconnector switching surge is possible. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 159(4): 8– 17, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20309  相似文献   

7.
Evaluation of insulation strength for lightning surge that actually enters into substations is important in estimating insulation reliability of gas‐insulated equipment. The standard lightning impulse voltage (1.2/50 µs) is used for factory tests. However, the actual lightning surge waveforms in substations are complex and are usually superimposed with various oscillations. Insulation characteristics of SF6 gas as a function of such complex voltages have not been sufficiently clarified. This paper deals with gap breakdown characteristics in SF6 gas under submicrosecond pulses. Breakdown voltages are lower under a polarity reversal condition than under a monopolarity condition. The cause of this difference is discussed while observing discharge propagation using an image converter camera. The electrode size effect is also discussed. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 146(4): 18–25, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10246  相似文献   

8.
To lower the lightning impulse withstand voltage of gas insulated switchgear (GIS) while maintaining the high reliability of its insulation performance, it is important to define in an organized way the insulation characteristics for non-standard lightning impulse voltage waveforms that represent actual surge waveforms in the field and compare them with the characteristics for the standard lightning impulse waveform quantitatively. In the preceding researches, lightning surge waveforms and disconnector switching surge waveforms at UHV, 500 kV, and 275 kV substations were analyzed and five to six kinds of non-standard lightning impulse waveforms with basic frequencies of 0.6 to 5.0 MHz were identified. Then, the dielectric breakdown voltage ? time characteristics were measured under several different conditions on the quasi-uniform SF6 gas gaps and partly the coneshaped insulating spacers that represent insulation elements of GIS for six kinds of nonstandard lightning impulse waveforms. In this paper, the resultant breakdown voltages were evaluated in terms of the overvoltage duration, which led to their formulation in a unified way. On the basis of these insulation characteristics and their unified formulation, the paper investigated a method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms with equivalent stress for the insulation. When the constructed algorithm was applied to five examples of representative two type waveforms in the lightning surge time region, they were converted into standard lightning impulse waveforms with crest values reduced by 20% to 34%, suggesting potentiality for reduction of lightning impulse insulation specifications of GIS.  相似文献   

9.
To lower the insulation specifications (specifically, the lightning impulse withstand voltage) of a gas insulated switchgear (GIS) and thus cut the equipment cost while maintaining the high reliability of its insulation performance, it is necessary to define in an organized way the insulation characteristics for non-standard lightning impulse voltage waveforms that represent actual surge waveforms in the field and compare them with the characteristics for the standard lightning impulse waveform quantitatively. In this paper, first, lightning surge waveforms and disconnector switching surge waveforms at UHV, 500 kV, and 275 kV substations were analyzed and five non-standard lightning surge waveforms with basic frequencies of 0.6 to 5.0 MHz were identified. Next, high-voltage circuits that generate these non-standard lightning surge waveforms were designed and constituted using EMTP (electro magnetic transients program) based on a circuit with a gap, inductors, and resistors connected in series and resistors and capacitors connected in parallel. Further, circuits were actually constructed, to obtain voltage waveforms approximately equal to those designed. Finally, the dielectric breakdown voltage-time characteristics were measured under several different conditions for the quasi-uniform SF6 gas gap that represents an insulation element of a GIS. As a result, it was found that, in the tested range, the dielectric breakdown values for non-standard lightning impulse waveforms were higher than for the standard lightning impulse waveform by 6% to 32%  相似文献   

10.
A new 72‐kV rated low‐pressure dry‐air insulated switchgear applying electromagnetic actuation and a function that supports CBM has been developed. First, the dielectric characteristics in dry air under lightning impulse application were investigated for bare and insulator‐covered electrodes. The dependence of the breakdown electric field strength on the effective area was found in order to apply it to the configuration design of the insulation mold for the vacuum interrupter. In addition, the dependence of the moisture volume on the surface resistance was found in order to decide the moisture volume in the gas pressure tank. Next, a new vacuum circuit breaker (VCB) was designed. To keep the dimensions the same as in the previous 72‐kV SF6 gas insulated switchgear, the distance between contacts in the vacuum interrupter must be shorter than in the previous switchgear. The voltage withstand capability between electrodes practically designed for the vacuum interrupter was investigated under DC voltage application, in a small capacitive current breaking simulation. The gap configuration, including contacts and slits, was optimized and the distance was shortened by 11% from the previous switchgear. As a result, the new low‐pressure dry‐air insulated switchgear was designed to be comparable in external size to the previous SF6 gas insulated switchgear. Using dry air as an insulation medium with low pressure makes it possible to reduce the environmental burden. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 175(1): 18–24, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21058  相似文献   

11.
This paper describes the outline and results of the lightning impulse tests for a 275‐kV full GIS substation. The behavior of lightning surges is a very important factor for the rational design of substations and low‐voltage and control circuits inside the substations. For the above reason, we carried out lightning impulse tests for a new 275‐kV full GIS substation. In these tests, we measured voltage induced in low‐voltage and control circuits, transient characteristics of grounding grid, injected voltage and current waveforms, and so on. By investigating these data, we confirmed the behavior of lightning surges inside the substation. We also compared simulated waveforms by EMTP analysis with the measured waveforms. The simulated results agreed well with the measured results. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(1): 46–58, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10230  相似文献   

12.
SF6 is used as the main insulation gas for gas‐insulated switchgear (GIS), but it has recently become a gas that must be restricted because of its greenhouse effects. To date, we have studied the insulation characteristics of compressed N2 and CO2 as possible alternatives for SF6. We have reported that N2 or CO2 must be pressurized to 2.0 MPa when it is used as a substitute for SF6 at 0.5 MPa. Therefore, we have proposed a hybrid installation composition that uses gas and solid insulators. Because the central conductor of GIS is covered by a solid insulator in this composition, a high‐pressure gas at 2.0 MPa is not needed. However, the joint of the solid insulator becomes a weak point for discharge development. In this paper, we describe an effective configuration for improvement of the withstand voltage based on experiments. The most effective connector was made of resin without an implant electrode and the most effective configuration was one without a solid–solid interface between the solid insulator of the central conductor and the resin connector. In this experiment, the improvement of breakdown electric field of the hybrid composition was 44% or more compared with the case of only gas insulation (conventional method). In addition, further improvement can be expected by optimizing the insulation creepage distance and configuration. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 178(1): 11–20, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21107  相似文献   

13.
Efforts of designers of gas‐insulated switchgear (GIS) are currently focused on such features as smaller installation area and economical efficiency. Circuit breakers (CB), disconnecting switches (DS), and earthing switches (ES) have been redesigned in more compact configurations. Compactness and light‐weight requirements are applied also to bushings used in GIS. GIS bushings can be divided in three general types: capacitor, gas‐filled, and molded bushings. Requirements of the light weight and the economical efficiency of gas‐filled bushings can be satisfied by improvements in insulation technology. Size reduction can be effectively achieved by moderation of the electric field strength on the outside surface of the hollow insulator in the area of the inner grounded electrode tip. We devised a new inner grounded electrode structure consisting of a cylindrical electrode and a ring electrode supported by column electrodes. This paper describes the effect of reduction of the maximum value of electric field strength on the outside surface of the hollow insulator by a new type of grounded electrode. Then, improvement of insulation performance for electrodes with insulation coating in SF6 gas is described as the composite insulation technology. Finally, the efficiency of these insulation technologies is described by the basic insulation test results of a prototype compact 800‐kV SF6 gas‐filled bushing. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 171(1): 19–27, 2010; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/eej.20898  相似文献   

14.
SF6 gas has excellent dielectric strength and interruption performance. For these reasons, it has been widely used for gas‐insulated switchgear (GIS). However, use of SF6 gas has become regulated under agreements set at the 1997 COP3. Thus, investigation and development for GIS with a lower amount of SF6 gas are being carried out worldwide. Presently, SF6‐free GIS has been commercialized for the 24‐kV class. Air or N2 gas is used as the insulation gas for this GIS. On the other hand, SF6‐free GIS has not been commercialized for the 72‐kV‐class GIS. The dielectric strengths of air and N2 gas are approximately one‐third that of SF6 gas. To enhance the insulation performance of air and N2 we have investigated a hybrid gas insulation system which has the combined features of providing an insulation coating and suitable insulation gas. We have developed the world's first 72‐kV SF6‐free GIS. This paper deals with key technologies for SF6‐free GIS, such as the hybrid insulation structure, a bellows for the high‐pressure vacuum circuit breaker, a newly designed disconnector and spacer, and prevention of particle levitation. Test results of the 72‐kV high‐pressure air‐insulated GIS with the vacuum circuit breaker are described. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 157(4): 13–23, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20451  相似文献   

15.
To lower the insulation specifications (specifically, the lightning impulse withstand voltage) of oil-immersed transformers and thus reduce equipment cost while maintaining high insulation reliability, it is required to identify the insulation characteristics under non-standard lightning impulse waveforms that are associated with actual surge waveforms in the field and quantitatively compare them with the characteristics under the standard lightning impulse waveform. In the previous research, field overvoltages in the lightning surge time region were analyzed, and four typical non-standard lightning impulse waveforms were defined. These four waveforms were used to measure the breakdown voltages and the partial discharge inception voltages on three models of the winding insulation elements of oil-immersed transformers. The average breakdown voltages were evaluated in terms of the overvoltage duration. This paper describes a method for converting of non-standard lightning impulse waveforms into standard lightning impulse waveforms with equivalent stress for the insulation. The constructed algorithm was applied to four examples representing two types of non-standard lightning waveforms. Due to the conversion into standard lightning impulse waveforms, the crest values were reduced by 14% to 26%. This seems to be a potential for reduction of lightning impulse insulation specifications of oil-immersed transformers.  相似文献   

16.
We observed current pulse waveforms of partial discharge (PD) in SF6 gas so as to investigate the PD mechanism. We also measured light intensity and light emission image of PD simultaneously under different conditions of applies voltage and SF6 gas pressure. From these experiments, we found that the “double-peak current waveform” appeared at high pressure and high voltage conditions. We also analyzed the mutual correlation of waveforms between a single current and the light emission. Moreover, we obtained experimental evidence of filmentlike light image appearing at the PD tip under the same condition with double-peak current waveform. From the electric field analysis around the needle electrode tip, we believe that the filamentlike light image expands beyond the critical electric field of SF6 gas. Thus, we concluded that these current waveforms with double peaks showed evidence of leader-type PD, leading to breakdown. Finally, we could point out that leader-type PD should be distinguished and measured for the diagnosis of GIS insulation performance. © 1999 Scripta Technica, Electr Eng Jpn, 129(4): 58–65, 1999  相似文献   

17.
This paper describes partial discharge (PD) inception and breakdown voltage characteristics of a CO2/N2/SF6 gas mixture in a nonuniform field. These voltage characteristics were investigated with ac high voltage by changing the mixture rate of each gas of CO2, N2, and SF6 gas and the gas pressure from 0.1 MPa to 0.6 MPa. It was found that adding a small amount of CO2 gas into a N2/SF6 mixture causes a drastic increase in the breakdown voltage. For instance, when the mixture rate of SF6 in N2/SF6 gas mixture is 50%, with the addition of 1% CO2 the maximum breakdown voltage becomes 1.31 and 1.15 times higher than that of a 50% N2/50% SF6 gas mixture and pure SF6 gas, respectively. Moreover, those voltage characteristics of a CO2/N2/SF6 gas mixture were also investigated by changing the electric field utilization factor as well as by applying positive and negative standard lightning impulse voltages in order to discuss the corona stabilization effect, which seems to be one reason for the drastic increase in the breakdown voltage. These results and breakdown mechanism of the CO2/N2/SF6 gas mixture are discussed on the basis of the corona stabilization effect and the dissociation energies of the component gases by observing PD light images, PD light intensities through a blue and red filter, and PD current waveforms. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 140(3): 34–43, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10019  相似文献   

18.
In response to growing environmental concerns, we attempted to develop switchgear without using SF6 gas. In our research, we used compressed air and pure N2 as an electrical insulation gas, because of their low global warming potential. In this paper, we examined the impulse breakdown and impulse partial discharge characteristics under various conditions related to nonuniformity of the electric field. The experimental results show that the breakdown voltage (BDV) of air is higher than that of pure N2 gas under highly nonuniform field conditions in the rod–plane gap. On the other hand, the discharge inception voltage of air and N2 were almost the same. Furthermore, first partial discharge (PD), leader discharge, and its transition to the breakdown were successfully observed through the measurement of discharge current and light emissions under impulse voltage application. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 148(3): 36–43, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10277  相似文献   

19.
Gas‐insulated switchgear (GIS) has widely been used for AC power distribution because of its high reliability and compactness. Recently, DC GIS has been developed with various investigations for dielectric breakdown characteristics of DC gas insulation. GIS insulation is composed of SF6 gas and solid spacers, and it has been recognized that the dielectric performance of DC GIS is mainly influenced by solid spacers. Under DC stress, the electric field is directed one way, the effect of electrification for charges to be accumulated in the spacer must be taken into account and also the effect exists in AC GIS because the switching operations may leave the remnant DC charge on the AC GIS spacer. This paper first describes the effective resistivity (the bulk or the surface) of the solid spacer under the DC stress from the experimental investigation, and the critical factor on the solid spacer that causes reduced dielectric performance of the GIS insulation is studied. Second, the present paper deals with the electrification on the GIS with various levels of surface roughness of the epoxy insulator and metallic electrode. Finally, the DC insulation characteristics of GIS insulator are investigated based on the experimental results. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 168(4): 6–13, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20788  相似文献   

20.
In this paper, we first study the voltage and electric field distribution characteristics under the basic lightning impulse level (BIL) of 2400 kV by finite element method (FEM) calculation which are affected by the internal shielding structure of the gas‐insulated bushing for the 1100‐kV gas‐insulated substation (GIS). On this basis, four parameters of the shielding structure are determined to be the decision variables in the optimization process. Four electric field objective functions and four potential objective functions are also proposed. Using a multiobjective optimization method, we then construct an evaluation function with the eight objective functions mentioned above, which are used to evaluate the electric field and potential distribution synthetically. Furthermore, a combination of FEM and the evolution strategy is used to construct the stochastic optimization objective function with the multiobjective evaluation function. The electric field and potential distribution of the gas‐insulated bushing are greatly improved after optimization, and the electric field strength at key spots is effectively reduced. The insulation system of gas‐insulated bushing for 1100‐kV GIS designed by this method has passed type tests and worked well nearly 3 years. So, this optimization provides a constructive method and useful basis for the design of gas‐insulated bushings for 1100‐kV GIS and other electrical equipment. © 2013 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号