首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superhydrophobic films were developed on wood substrates with a wet chemical approach. Growth of zinc oxide (ZnO) nanorods was found differentially in the cross‐sectional walls and inner lumenal surfaces. The surface roughness of the prepared films on the inner lumenal surface conformed to the Cassie–Baxter wetting model, whereas the roughness across the microsurface of the cell wall was in conformity with the hydrophobic porous wetting model. The space between the ZnO nanorods and the microstructure of the wood surface constituted the nanoscale and microscale roughness of the ZnO nanofilm, respectively. The water contact angle of the prepared wood surfaces was up to 153.5°. In the prepared films, monolayers of stearic acid molecules were self‐assembled on the ZnO nanorods, which in turn, were attached to the wood surface via dimeric bonds. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A stable porous superhydrophobic high‐density polyethylene (HDPE) surface with water contact angle of 160.0 ± 1.9° and sliding angle of 2.0 ± 1.6° was obtained by adding ethanol in humid atmosphere at 5°C. Soaked in water with temperatures ranging from 5 to 50°C for 15 days, even suffering compressive forces, and the water contact angles were still higher than 150°. After water flowed through the surface continuously for 30 min, even water droplets with a diameter of 4 mm dropped onto the HDPE surface from 30 cm high for 10 min, the water contact angles were also higher than 150°. A brief explanation to the formation of the porous superhydrophobic HDPE surface was put forward. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Fluorine‐based amphiphobic coatings have been widely used in commercial textiles to provide water‐ and oil‐repelling abilities. However, few reports from the literature survey have discussed the surface structural effects of the coated substrate on amphiphobicity. In this research, various thickness amphiphobic coatings based on mixed epoxy, tetraethylorthosilicate, and a particular alkoxysilane with fluorinated side chains (F‐silane) were deposited on Grade 420 stainless steel plates. Film amphiphobicity is characterized by measuring the water and oil contact angles of the coating. Film morphology is examined using atomic force microscopy. The deposited films free of F‐silane are thinner than 150 nm. The films become thick at high F‐silane volume percentage with the surface cavities, ridges, and granules being masked out. On the addition of F‐silane, the water contact angle of the deposited films increases up to 105° and then reaches a plateau of ~ 107° with increasing F‐silane. In contrast, the oil contact angle increases up to 60° at first and then slowly declines with the F‐silane concentration. The total drop of oil contact angle by ~ 20° was attributed to the masking out of surface features on film thickening. This indicates that the surface oleophobicity depends on surface structures. Therefore, improving surface amphiphobicity correlates with creating more refined multiscale surface structures during the industrial manufacturing process of steel plate, prior to surface modification by F‐silane. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41003.  相似文献   

4.
Organic superhydrophobic films were prepared by utilizing TA‐N fluoroalkylate (TAN) and methyl methacrylate (MMA) copolymer as water‐repellent materials and inorganic silica powder as surface roughness material has been developed. Coating solutions prepared by adding silica powders into copolymer solution directly (one‐step method) and by adding silica powders into monomers and allowing them to react (two‐step method). The results showed that contact angles of the films prepared by one‐step method (37.6 wt % of silica powders in the coating solution) were greater than 150°, but the transmittance of the film at visible light was only 30%. On the other hand, the contact angle of films prepared by two‐step method (20 wt % of silica powders in the coating solution) was greater than 160° and the transmittance of the film was greater than 90%. The contact angle of the film prepared by poly(octyl acrylate), POA, was 32.1°, but while introducing silica powder into the system, the contact angle of the film was reduced to be smaller than 5°. Thus, superhydrophobic and superhydrophilic films can be obtained by introducing a roughening material on the hydrophobic surface and the hydrophilic surface, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1646–1653, 2007  相似文献   

5.
With the continuous development of bionics, such as, geckos and virginia creeper with both superhydrophobic and super-adhesive, the surface wetting and super-adhesive properties of various porous materials have attracted extensive attention of the scientific and medical communities. Here, the honeycomb polyurethane (PU) porous films with strong adhesion were successfully prepared by microphase separation method and the effects of growth parameters on their microstructure and adhesive strength to ice were investigated. It was found that a high relative humidity (e.g., 100%) and a low solution concentration (e.g., 2%) facilitated the formation of ordered honeycomb PU porous films, and as-prepared PU pores with average pore diameter as small as 5 μm are better ordered and more uniform than these in related documents. Although the contact angle of water droplets on the surface of PU porous films increased from the premodification value of 85–130° to more than 160° after surface modification with polydopamine (PDA), the corresponding rolling angle remained approximately constant (180°), indicating that the surface of PU porous films has strong adhesion similar to geckos and virginia creeper. Furthermore, at lower temperature, the PU porous films exhibited the high adhesive strength of 142.13 kPa on ice, which was strongly dependent on the porous microstructures and surface compositions. The improved adhesive behavior to ice of honeycomb PU porous films modified with PDA provides new strategies for surface modification of materials and potential applications in medical domain.  相似文献   

6.
This study investigates the fabrication of a stable superhydrophobic surface with low contact angle (CA) hysteresis using ZnO thin films prepared by cathodic electrodeposition and subsequent gaseous oxidation. The deposition time is a crucial factor in nanostructuring and producing surface roughness of the films. Cathodic electrodeposition for 60 s created a number of nanopillars, which exhibited the highest CA value, i.e., 167.9°. The rough ZnO surface displayed not only enhanced water repellency with low CA hysteresis but also excellent superhydrophobic stability. The application of the Cassie–Baxter model demonstrated that the ZnO nanostructure contributed to increasing the area of a water droplet in contact with air, leading to superhydrophobicity. Such a unique textured surface showed a great potential for the engineering of strong superhydrophobic coatings.  相似文献   

7.
In this study, maleinized (SOMAP) and isocyanated soybean oil (SONCO) triglycerides have been successfully grafted onto one surface of poly(vinyl alcohol)(PVA) films to give films that are hydrophilic on one side and hydrophobic on the other. The surface grafting was accomplished by the reaction of succinic anhydride or isocyanate functionalities of soybean oil derivatives and the hydroxyl groups of PVA films. The reaction was run in toluene, using PVA films on glass slides so that only one side of the film was accessible. After grafting, the films were rinsed with hot toluene to remove ungrafted triglycerides from the surface. The reaction on the surface was confirmed by ATR‐FTIR and 1H‐NMR spectroscopic techniques. A series of films were prepared at different concentrations of SOMAP or SONCO in toluene. The increase in hydrophobicity with an increase in SOMAP or SONCO concentrations was observed by water contact angle measurements. The contact angles on the grafted side of the film reach their maximum value of 88° and 94° for 26 and 2.5% SOMAP and SONCO concentrations in toluene, respectively, while the ungrafted side gives contact angle of 48°. Surface morphologies of PVA‐g‐SOMAP and PVA‐g‐SONCO films were investigated by atomic force microscopy, whereas optical microscopy and staining was used to determine the homogeneity of the films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
《Ceramics International》2019,45(14):16864-16872
In this study, ZnO/CuO hybrid hydrophobic nanopowders were synthesized using a common single-step chemical precipitation route without using modifiers. Influence of initial ZnO:CuO precursor concentrations and alkaline agent type on the wettability behavior of the prepared samples were investigated. Wettability properties of the prepared samples were assessed by measuring the water contact angle and contact angle hysteresis values. Fourier transform infrared spectra, scanning electron microscope micrographs and X-ray diffraction patterns were applied to identify the surface chemistry and morphological features. Scanning electron microscope images of the synthesized ZnO/CuO nanocomposites indicated flower-like morphologies containing plenty of nano-needles, -rods, and -sheets with thicknesses lower than 90 nm. The sample prepared under the optimum conditions was superhydrophobic having water contact angle and contact angle hysteresis of 162.6°±1 and 2°, respectively. It was applied to coat the surface of stainless steel meshes by spray deposition method. The resultant superhydrophobic surface exhibited excellent self-cleaning (water repellency) property and a suitable stabilities under the ambient and saline solution (NaCl, 3.5%) media. Additionally, electrochemical corrosion tests confirmed that the corrosion resistance of the fabricated ZnO–CuO coating was higher than the initial bare mesh.  相似文献   

9.
张浴晖  齐宏进 《化工学报》2008,59(6):1584-1589
采用射频磁控溅射法,首先以聚四氟乙烯(PTFE)为靶,氩气为载气,在聚对苯二甲酸乙二醇酯(PET)基底上沉积氟碳(FC)膜;然后以金属锌为靶,氩气为载气,氧气为反应气体,在FC膜上再沉积一层ZnO膜而形成FC/ZnO有机-无机纳米杂化材料。用AFM、XPS、UV以及静态接触角测定仪对杂化材料的基本性质进行了研究。结果表明,该法制得的杂化材料是由纳米粒子组成的岛状结构,岛的表面起伏不平。其生长模式是一种依附于有机核的沉积-扩张生长。杂化材料具有较好的紫外吸收特性,这是由于其分子结构中含有π-π共轭双键、表面的不平整性以及纳米氧化锌粒子对紫外光的吸收共同作用的结果。静态水接触角均大于90°,呈现出良好的疏水性。  相似文献   

10.
A porous superhydrophobic poly (vinyl chloride) surface was obtained by a simple approach. The water contact angle and the sliding angle of the superhydrophobic poly(vinyl chloride) surface were 154 ± 2.3o and 7o, respectively. The porous superhydrophobic PVC surface remained superhydrophobic property in the pH range from 1 to 13. When the superhydrophobic PVC surface was immersed in water with the temperatures ranging from 5 °C to 50 °C for 1 h to 30 days, the water contact angle remained higher than 150°. After outdoor exposure for 30 days, the contact angle still remained 150o.  相似文献   

11.
The grafted homopolymer and comb‐shaped copolymer of polyacrylamide were prepared by combining the self‐assembly of initiator and water‐borne surface‐initiated atom transfer radical polymerization (SI‐ATRP). The structures, composition, properties, and surface morphology of the modified PET films were characterized by FTIR/ATR, X‐ray photoelectron spectroscopy (XPS), contact angle measurement, and scanning electronic microscopy (SEM). The results show that the surface of PET films was covered by equable grafting polymer layer after grafted polyacrylamide (PAM). The amount of grafting polymer increased linearly with the polymerization time added. The GPC date show that the polymerization in the water‐borne medium at lower temperature (50°C) shows better “living” and control. After modified by comb‐shaped copolymer brushes, the modified PET film was completely covered with the second polymer layer (PAM) and water contact angle decreased to 13.6°. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Porous interior structured polyimide (PI) films with a hierarchical surface are fabricated from 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride and 4,4′‐oxydianiline by a water vapor induced phase separation process under a humid environment. Superhydrophobic properties with a water contact angle of 161° are obtained using the hierarchical surface morphology, which can be adjusted from flower‐like to wrinkle‐shape particles facilely by changing the relative humidity. The dielectric constant (k) of the PI film decreases sharply from 2.8 (film prepared under dry conditions) to ≈1.9 (film prepared under humid conditions) because of the interior porous structure and fluorine‐containing framework. Both a low‐k and superhydrophobicity are very important parameters for PI films in microelectronic and insulating applications.  相似文献   

13.
Development of the solid surfaces with water-repellent and self-cleaning ability has attracted much research interest in recent years. In the present research work, we have prepared water repellent silica coatings on glass at room temperature (~27 °C) by sol gel process and surface silylation technique. Coating sol was prepared by keeping the molar ratio of tetramethoxysilane (TMOS), methanol (MeOH) and water (H2O) constant at 1:12.36:4.25, respectively, with 0.01 M NH4F. The dip coated silica films were surface silylated using two different silylating agents namely hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDZ). The HMDSO and HMDZ in hexane solvent were varied from 0 to 1 vol.% and silylation period was varied from 1 to 3 h. The HMDSO and HMDZ modified films showed dense and porous surface morphology, respectively. The HMDSO modified silica films showed static water contact angle of 122° whereas HMDZ modified films showed 165°. The HMDZ modified films displayed the extreme water repellency comparing with that of lotus leaves. The silica films were characterized by surface profilometer, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared microscopy, thermal and chemical aging tests, optical transmission and static water contact angle measurements.  相似文献   

14.
Adhesion of the oral bacterium Streptococcus sanguis was investigated on two series of surfaces, one solid, non-porous and one porous with a pore diameter centered around 0.2 μm. Each series consisted of four substrates with varying surface free energies: pure aluminum oxide, poly(ethylene glycol) (PEG)-modified aluminum oxide, and two types of silanized aluminum oxide. The surface composition was analyzed by ESCA and the surface free energy and acid-base character were determined by contact angle measurements using water, formamide, and diiodomethane according to van Oss and Good. Contact angle measurements were conducted on non-porous substrates which had been subjected to the same silanization procedure as the porous ones. Untreated aluminum oxide and PEG-modified aluminum oxide were both hydrophilic and gave water contact angles of less than 10°. One silanization procedure gave a surface of intermediate hydrophobicity, with a γtot of 47.5 mN/m; the other gave a strongly hydrophobic surface of γtot = 27.4 mN/m. Adhesion of S. sanguis was measured by using radiolabelled bacteria. It was demonstrated that more bacteria adhered to the porous than to the non-porous substrate and that the PEG treatment, as well as the two silanization procedures, resulted in a decrease in bacterial adhesion, in relation both to the controls treated with aqueous buffer and to surfaces treated with fresh saliva.  相似文献   

15.
The aim of this research was to investigate the effect of rapeseed oil concentration (1–3% w/w) on the water vapor, oxygen and carbon dioxide permeability, water vapor sorption and surface properties of whey protein isolate emulsion‐based films. The water contact angle as affected by oil content, film side and time was analyzed. The effect of temperature (5 and 25°C) on the water vapor permeability (WVP), water vapor sorption kinetics and diffusion coefficient was also studied. The results showed that the incorporation of a lipid phase to whey protein film‐forming solutions was able to decrease the WVP, water hydrophilicity (increasing water contact angle) and water transfer of whey protein films. However, the films containing oil were more permeable to oxygen and carbon dioxide. Significantly higher values of WVP and diffusion coefficient were obtained at 5°C than at 25°C, indicating that storage temperature should be taken into account when designing the composition of edible films and coatings for food applications. POLYM. ENG. SCI., 59:E375–E383, 2019. © 2018 Society of Plastics Engineers  相似文献   

16.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Fluorinated amorphous carbon (a-C:F) thin films are deposited on both flat silicon and porous silicon (PS) surfaces via laser ablation of a polished polytetrafluoroethylene (PTFE). Porous silicon (PS) is prepared by anodic etching of p-type silicon wafers in HF based solution. The film deposited on the flat silicon surface exhibits a highly hydrophobic state with water contact angle (WCA) of ~ 146°. In comparison, the surface of film deposited on PS layer shows a roll-off superhydrophobic state, where the water droplet is seen to roll off without wetting its surface with contact angle hysteresis of ~ 4.5°. Micro-Raman results show that the graphite domain of the film deposited on PS has higher disorder level and lower average gain size. The effect of substrate porosity on chemical composition of deposited films has been investigated by using both Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the porous substrate improves the incorporation of the fluorine into the film. Atomic force microscopy (AFM) results revealed that the film deposited on PS has higher surface roughness and lower grain size as compared to the film deposited on flat silicon surface.  相似文献   

18.
Stable superhydrophobic surface based on low‐density polyethylene (LDPE)/ethylene–propylene–diene terpolymer (EPDM) thermoplastic vulcanizate (TPV) was successfully fabricated by using etched aluminum foil as template. The etched aluminum template consisted of micropores and step‐like textures, was obtained by the metallographic sandpaper sanding and the subsequent acid etching. The surface morphology and hydrophobic properties of the series molded TPV surfaces were researched by varying the weight ratio of the LDPE/EPDM TPV. The superhydrophobic LDPE/EPDM TPV surfaces exhibited the microstructures consisting of step‐like textures obtained via molding with etched aluminum template and a large number of fiber‐like structures resulted from the plastic deformation of LDPE matrix. The obtained TPV (LDPE/EPDM weight ratio = 70/30) surface exhibited the remarkable superhydrophobicity, with a contact angle of 152.0° ± 0.7° and a sliding angle of 3.1° ± 0.8°. The molded TPV surface had excellent environmental stability when the pH of water solution was in the range of 1 to 14; moreover, the surface also showed the excellent resistance to various organic solvents. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46241.  相似文献   

19.
《Ceramics International》2023,49(15):25135-25143
In this paper, 304 stainless steel-based ZnO (304SS-based ZnO) seed layer was prepared by using sol-gel method or electrochemical deposition. Superhydrophobic nano-ZnO (CSS–ZnO) surface were prepared on its surface by hydrothermal method. The results show that different structural morphologies of 304SS-based ZnO surface were prepared by varying different seed layer preparation methods. In the static icing test, compared with hydrophilic nano-ZnO (SS–ZnO) surface, hydrophobic nano-ZnO (QS-ZnO) surface and 304SS surface at −5 °C, −10 °C and −15 °C. The icing time of CSS-ZnO surface was prolonged by about 2.7 h at −5 °C, delayed by about 40 min at −10 °C and delayed by about 9 min at −15 °C. The CSS-ZnO surface is the most effective surface in static anti-icing. It is because that there has a residual air layer at the solid-liquid interface and the coating can still effectively retard ice formation in a partially wetted state. In the dynamic icing test, compared with QS-ZnO surface, SS-ZnO surface and 304SS surface at −16 °C, SS-ZnO surface and QS-ZnO surface have no anti-icing effect, and CSS-ZnO surface has a significant anti-icing effect. The mechanism for inhibiting condensation of water droplets by superhydrophobic surfaces was illustrated, which can be identified that the contact angle of the ice embryo will increase with the increase of the water contact angle. This work provides a practical application for promoting anti-icing ability of 304SS surfaces in industry.  相似文献   

20.
Porous particles with amphiphilicity were prepared by a nonpolymeric pore‐formation process with the sulfonation of polystyrene microspheres. Nano titanium dioxide (TiO2) particles were then grafted onto the surface via a sol–gel method to finally form the composite particles. The effects of the mass ratio of ethanol (EtOH) to water, temperature, and solubility parameter on the pore‐formation process is discussed in detail. The morphology, porous structure, and wetting properties of the particles were studied by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and contact angle measurement. The results show that porous sulfonated polystyrene (SP) microspheres could be fabricated at 60°C with a 1 : 1 mass ratio of EtOH–water and a solubility parameter of 29.69 MPa1/2. The TiO2 particles were determined to be grafted onto the SP microspheres by physical‐bond interaction on the basis of FTIR analysis. The contact angles for both water (aqueous‐phase) and various organic solvent (oil‐phase) droplets with different polarities on the surface of compressed tablets of TiO2–SP powder were all lower than 30°; this indicated excellent amphiphilicity in the composite particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号