首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dielectric relaxation behavior of different conducting carbon black‐filled ethylene‐octene copolymer (EOC) vulcanizates prepared by melt‐mixing method has been studied as a function of frequency (100 Hz–5 MHz) over a wide range of temperatures (25–100°C). The effect of filler loading and frequency on AC conductivity, dielectric permittivity, impedance, and dielectric loss tangent (tanδ) has been studied. The nature of variation of the dielectric permittivity with the filler loadings was explained on the basis of interfacial polarization of the filler in the polymer matrix. The effect of filler loading on the real and complex part of the impedance was explained by the relaxation dynamics of the polymer chains in the vicinity of the fillers. The effect of filler and temperature on dielectric loss tangent, dielectric permittivity, AC conductivity, and Nyquist plot was also reported. The bound rubber (BR) value increases with increase in filler loading suggesting the formation of strong interphase, which is correlated with dielectric loss. Thermal activation energy (Ea) was found to be decreasing with the temperature, which follows the Arrhenius relation: τb = τ0 exp(−Ea/KBT) where τb is the relaxation time for the bulk material. From the plot of lnτb versus inverse of absolute temperature (1/T), the activation energies (Ea) were found to be 0.37 and 0.44eV, respectively. The percolation threshold was observed with 40 phr carbon black loading. POLYM. COMPOS., 37:342–352, 2016. © 2014 Society of Plastics Engineers  相似文献   

2.
The purpose of this work was to study the effect of carbon black (CB) surface state on the interaction between CB and polymer matrix, as well as the polymer chain mobility. The mobility of polymer chain absorbed on the CB surface was estimated by using a dynamic mechanical analyzer and an impedance analyzer. The interaction parameter (B) and immobilized polymer layer thickness (ΔR) were estimated from the dynamic mechanical analysis. It was observed that values of B and ΔR decreased with increasing fluorine content on the CB surface. On the other hand, from the dielectric measurement, the Maxwell–Wagner–Sillars (MWS) relaxation peak, accompanied by migration of the charge carriers, accumulated at the interface between polymer and CB, observed at temperatures higher than the glass‐transition temperature (Tg) of the polymer matrix. The activation energy (Ea MWS), calculated from the relaxation frequency of MWS relaxation, was decreased with increasing surface fluorine content. Good agreement was found between the B and the ΔR values estimated from the dynamic mechanical analysis and the Ea MWS calculated from the MWS relaxation frequency estimated from dielectric measurement. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2928–2933, 2004  相似文献   

3.
Dielectric response of conducting carbon‐black‐filled ethylene–octene copolymer microcellular foams has been investigated with variation of blowing agent and filler loading in the frequency range of 100 Hz to 5 MHz and temperature range from 30 to 100°C. With increase in blowing agent loading, the dielectric permittivity increases for both unfilled as well as carbon‐black‐filled microcellular foams. The experimental complex impedance plots were compared with model‐fitted plots obtained by taking an equivalent circuit of (CQR) (CR).The values of Rb (bulk resistance), Rgb (grain boundary resistance), bulk capacitance (Cb), and grain boundary capacitance (Cgb) at different temperatures were calculated and compared with experimental values. The relaxation time due to bulk effect (τb) has been calculated from relaxation frequency (fr). The dc conductivity (σdc) decreases with rise in temperature indicating the existence of positive temperature coefficient of resistance in the material. The activation energy (Ea) calculated from the relaxation time due to bulk effect (τb) was found to be 0.446 eV, whereas it was 0.363 eV from the dc conductivity plot in the temperature range of 30–100°C. POLYM. COMPOS., 37:3398–3410, 2016. © 2015 Society of Plastics Engineers  相似文献   

4.
The thermal decomposition mechanism of maleated poly(3‐hydroxybutyrate) (PHB) was investigated by FTIR and 1H NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six‐membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating‐up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy Ea as a kinetic parameter of thermal decomposition was estimated by the Flynn‐Wall‐Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1789–1796, 2002; DOI 10.1002/app.10463  相似文献   

5.
The dielectric constant, dielectric loss factor, and alternating‐current conductivity of Gd‐doped poly(vinyl alcohol) (PVA) samples have been studied in the temperature and frequency ranges of 290–450 K and 50–5 × 106 Hz, respectively. Three relaxation processes—αa, αc, and ρ—have been obtained. The first one is due to the rotation of OH and C?O groups inside the amorphous part of PVA. The second process is due to the dipole relaxation in the crystalline phase of the sample. The changes in the peak position and height of αa and αc have been interpreted in light of the formation of complexes between GdCl3 and OH and C?O groups of the PVA structure. On the other hand, the ρ‐relaxation process is due to the space‐charge formation between the different phases inside the PVA samples. Alternating‐current conductivity measurements of the investigated samples have revealed that the hopping conduction mechanism is predominant. The maximum barrier height and the activation energy have been calculated and reported. In the low temperature range (306–333 K), the responsible conduction mechanisms of PVA doped with 2 or 4 wt % GdCl3 have been found to be small polaron tunneling and quantum mechanical tunneling, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Multiferroic ceramics were prepared and characterized in (1?x)BiFeO3x(0.5CaTiO3–0.5SmFeO3) system by a standard solid‐state reaction process. The structure evolution was investigated by X‐ray diffraction and Raman spectrum analyses. The refinement results confirmed the different phase assemblages with varying amounts of polar rhombohedral R3c and nonpolar orthorhombic Pbnm as a function of the substitution content. In the compositions range of 0.2≤x≤0.5, polar R3c and nonpolar Pbnm coexisted, which was referred to polar‐to‐nonpolar morphotropic phase boundary (MPB). According to the dielectric and DSC analysis results, the ceramics with x≤0.2 changed to diffused ferroelectric, and the ferroelectric properties were enhanced significantly. Two dielectric relaxations were detected in the temperature range of 200‐300 K and 500‐700 K, respectively. The high‐temperature dielectric relaxation was attributed to the grain‐boundary effects. While the low temperature dielectric relaxation obtained in the samples with x=0.3‐0.5 was related to the charge transfer between Fe2+ and Fe3+. The magnetic hysteresis loops measured at different temperature indicated the enhanced magnetic properties in the present ceramics, which could be attributed to the suppressed cycloidal spin magnetic structure by Ti ions. In addition, the rare‐earth Sm spin moments might also affect the magnetic properties at relatively lower temperature.  相似文献   

7.
Polyimide composite films were prepared by mixing the BaTiO3 particles into poly(amic acid) solution followed by film casting and thermal imidization under controlled temperature conditions. The poly(amic acid) was synthesized by solution polycondensation reaction of 4,4′‐oxydiphthalic anhydride with 2,6‐bis(4‐aminophenoxy)benzonitrile, using N‐methyl‐2‐pyrrolidone as solvent. The surface of BaTiO3 particles was modified by treating with an aminosilane coupling agent, 3‐aminopropyltriethoxysilane. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to characterize the structure and properties of the composites. The influence of BaTiO3 content on the composite film properties was evidenced. The films exhibited good thermal stability having the initial decomposition temperature above 520°C. They had stable dielectric properties over large intervals of temperature and frequency. The dielectric constant and the dielectric loss increased with the increase of BaTiO3 content. The dynamic mechanical analysis and dielectric spectroscopy revealed subglass transitions γ and β. At higher temperature an α‐relaxation that corresponds to the glass transition and a conductivity process were evidenced. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
The dielectric response of poly [(R)‐3‐hydroxybutyrate] (PHB) was investigated as a function of time after quenching a film from the melt to a crystallization temperature of 20 °C. In the frequency range investigated (20 to 106 Hz) a relaxation maximum was observed–attributable to the glass transition–which could be analysed by the Havriliak–Negami relation. Changes in the complex dielectric constant were monitored both during spherulite growth (primary crystallization) and subsequently during a period of progressive crystallization (secondary crystallization) at room temperature. The relaxation strength changed only slightly during primary crystallization and its peak position remained at a constant frequency. Subsequently a continuous decrease in relaxation strength occurred, indicating considerable changes in molecular mobility after spherulite growth had been completed. The results provide further evidence that molecular mobility in the amorphous regions decreases significantly with time, and that this would be the reason why PHB shows embrittlement on ageing at room temperature. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Octa(aminophenyl) polyhedral oligomeric silsesquioxane (OAP‐POSS) and boron‐containing phenol‐formaldehyde resin (BPFR) were synthesized, respectively. The BPFR nanocomposites with different OAP‐POSS content (wt%) were prepared, and their properties were characterized. The results show that the thermal degradation process of this nanocomposites can be divided into three stages, and they are all following the first order mechanism. The residual ratio and thermal degradation activation energy Ea of 9 wt% OAP‐POSS/BPFR nanocomposites are both better than others and the Ea increase gradually in three stages, which is 93.3, 134.0, and 181.9 kJ mol−1, respectively. Its residual ratio at 900°C is 36.48%. The mechanical loss peak temperature Tp is 228°C for 12 wt% OAP‐POSSS/BPFR nanocomposites, which is higher 48°C than pure BPFR. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The temperature (300–973 K) and frequency (100 Hz–10 MHz) response of the dielectric and impedance characteristics of 2BaO‐0.5Na2O–2.5Nb2O5–4.5B2O3 glasses and glass nanocrystal composites were studied. The dielectric constant of the glass was found to be almost independent of frequency (100 Hz–10 MHz) and temperature (300–600 K). The temperature coefficient of dielectric constant was 8 ± 3 ppm/K in the 300–600 K temperature range. The relaxation and conduction phenomena were rationalized using modulus formalism and universal AC conductivity exponential power law, respectively. The observed relaxation behavior was found to be thermally activated. The complex impedance data were fitted using the least square method. Dispersion of Barium Sodium Niobate (BNN) phase at nanoscale in a glass matrix resulted in the formation of space charge around crystal‐glass interface, leading to a high value of effective dielectric constant especially for the samples heat‐treated at higher temperatures. The fabricated glass nanocrystal composites exhibited P versus E hysteresis loops at room temperature and the remnant polarization (Pr) increased with the increase in crystallite size.  相似文献   

11.
The amino terminated polypropylenimine dendrimer (DAB‐dendri‐(NH2)4) was employed as a new nonlinear aliphatic curing agent for diglycidyl ether of bisphenol A (DGEBA). Nonisothermal curing reaction kinetics of DGEBA/DAB was investigated with a differential scanning calorimeter (DSC). The apparent reaction activation energy Ea is about 56.7 kJ/mol determined using the Kissinger equation, and a two‐parameter (m, n) autocatalytic model ([icirc]Sesták–Berggren equation) was confirmed to be able to well simulate the reaction kinetics in the light of the Málek method. In addition, the relation between reaction activation energy Ea and curing degree α was obtained by applying model‐free isoconversional analysis with the Kissinger‐Akahira‐Sunose (KAS) method. As α increases, Ea reduced quickly from >80 kJ/mol to ≈60 kJ/mol up to a ≈ 15%, then decreased slowly to 55 kJ/mol till a ~ 75%, and finally dropped to 44 kJ/mol at full conversion. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Dielectric properties and ac electrical conductivity of Acrylonitrile Butadiene Rubber‐poly(vinyl chloride)/Graphite Composite were studied at different frequencies (102?106 Hz) in the temperature range (298–423 K). The results show that the dielectric constant (ε′), dielectric loss (ε″), ac electrical conductivity (σac) and, the electric modulus are strongly dependent on the frequency and temperature. The dielectric constant ε′ increases with temperature and decreases with frequency, whereas the dielectric loss ε″ displays a broad maximum peak whose position shifts with temperature to a higher frequency region. Cole–Cole diagrams have been used to investigate the frequency dependence of the complex impedance at different temperature and graphite loading. Interfacial or Maxwell‐Wagner‐Sillars relaxation process was revealed in the frequency range and temperature interval of the measurements, which was found to follow the Havriliak–Negami approach for the distribution of relaxation times. At constant temperature, the frequency dependence of ac conductivity was found to fit with the established equation σac(ω) = Aωs quite well. The values of S for the investigated samples lie between 0.88 and 0.11. The conduction mechanism of ac conduction was discussed by comparing the behavior of the frequency exponent S(T) with different theoretical models. It was found that the correlated barrier hopping (C.B.H.) is the dominant conduction mechanism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The first and rate-limiting step in the degradation of bioactive glasses is thought to be the ion exchange of hydrated protons in the external fluid with alkali metal cations in the glass. The activation energy (Ea) for alkali ion hopping can be followed by dielectric spectroscopy. The replacement of CaO by Na2O resulted in a reduction in the Ea for ion hopping. In contrast, increasing the glass network connectivity or reducing the nonbridging oxygen content of the glass resulted in an increase in Ea. Substitution of K2O for Na2O had little influence on Ea. Mixing alkali metals increased the Ea as expected on the basis of the mixed alkali effect. There was no correlation between the Ea for ion hopping and the dissolution behavior of the glass. Furthermore, the activation energy for Si, Ca Na, and K ion release was found to be approximately a factor of three lower than that for ion hopping suggesting that another rate-controlling mechanism is important in the degradation of bioactive glasses. The presence of a second relaxation process suggested that bioactive glasses undergo amorphous phase separation into silica-rich and orthophosphate-rich phases and the two relaxation processes are due to ion hopping in the two phases.  相似文献   

14.
The kinetics of thermal degradation of thermotropic liquid crystalline poly(p‐oxybenzoate‐co‐ethylene‐2,6‐naphthalate) (PHB/PEN) with the monomer ratio of 60 : 40 and PEN in nitrogen was studied by dynamic thermogravimetry (TG). The kinetic parameters, including the activation energy Ea, the reaction order n, and the frequency factor ln(Z) of the degradation reaction for PHB/PEN (60 : 40) and PEN were analyzed by the single heating rate methods of Friedman and Chang. The effects of the heating rate and the calculating method on the thermostable and degradation kinetic parameters are systematically discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3915–3920, 2004  相似文献   

15.
A new organic–inorganic hybrid material was prepared through reactive blending of hydrogenated carboxylated nitrile rubber (HXNBR) with epoxycyclohexyl polyhedral oligomeric silsesquioxanes (epoxycyclohexyl POSS). The structure of the composite was characterized by Fourier transform infrared spectroscopy (FTIR) and solid‐state 13C Nuclear Magnetic Resonance spectra (solid‐state 13C‐NMR). The differential scanning calorimetry (DSC) at different heating rates was conducted to investigate the curing kinetics. A single overall curing process by an nth‐order function (1 ? α)n was considered, and multiple‐heating‐rate models (Kissinger, Flynn–Wall–Ozawa, and Crane methods) and the single‐heating‐rate model were employed. The apparent activation energy (Ea) obtained showed dependence on the POSS content and the heating rate (β). The overall reaction order n was practically constant and close to 1. The isoconversion Flynn–Wall–Ozawa method was also performed and fit well in the study. With the single‐heating‐rate model, the average Ea for the compound with a certain POSS content, 66.90–104.13 kJ/mol was greater than that obtained with Kissinger and Flynn–Wall–Ozawa methods. Furthermore, the calculated reaction rate (dα/dt) versus temperature curves fit with the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
In this article, the correlation between the thermorheological behavior and the molecular structure of two grades of metallocene polyethylene, namely linear low density and very low density polyethylene, is studied. The investigated polymers possess the same molecular weight and polydispersity index, but different levels of short branches. Increasing the number of short branches results in enhanced activation energy and delayed relaxation times of the polymers. Four methods including the time–temperature superposition (TTS), van Gurp‐Palmen and activation energy (Ea) as a function of the phase angle, Ea(δ), and the storage modulus, Ea(G′) are employed to study the thermorheological behavior of the samples. The results indicated that the thermorheologically simple behavior is dominant in the specimens. Both the Ea(δ) and Ea(G′) showed independency toward phase angle and the storage modulus. Moreover, the activation energy values obtained from the TTS principle and the Ea(δ) and Ea(G′) diagrams were in good agreement. The zero‐shear rate viscosity of the samples also followed the equation of the linear polyethylene. Regarding the simple thermorheological behavior and the agreement of the zero shear rate viscosity with the relation of the linear polyethylene, one can conclude that long branches do not exist in the investigated metallocene polyethylenes of this article. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
Nitro‐phenyl maleimide (NPM), is the organic stabilizer for poly (vinyl chloride) (PVC), has been investigated as thermal plasticization for rigid chlorinated poly (vinyl chloride) (CPVC). Dielectric relaxation of CPVC stabilized with 10 wt% of NPM has been studied in temperature and frequency ranges of 300–450 K and 10 kHz–1 MHz, respectively. An analysis of the dielectric constant, ε′ and dielectric loss index, ε″, was performed assuming a plasticization effect of NPM molecules. The plasticization effect of NPM molecules was confirmed by the behavior of the dielectric modulus M′ and M″ spectra. A clear dielectric α‐relaxation process has been obtained in the studied temperature range. The results showed that NPM reduce the glass transition temperature, Tg, of CPVC by about 20 K. This effect has been assigned to the plasticization effect of NPM. At lower temperatures, dielectric modulus spectra reveal that there is a role of the effect of the electrode polarization in the relaxation process. The behavior AC conductivity, σac, indicated that the conduction mechanism in all CPVC samples is hopping type conduction. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
DSC, dielectric relaxation and dynamic mechanical thermal analysis (DMTA) were carried out on two multi‐component poly(ether‐co‐amide) samples having different weight ratios of polyamide prepared by condensation polymerization with 12‐aminododecanoic acid, adipic acid and polyetherdiamine consisting of poly(tetramethylene oxide) and poly(propylene oxide). The melting temperature was lowered by an increase in the weight ratio of the polyamide segment. Three relaxation modes, α′, αs and β, were found from dielectric relaxation measurements in different temperature ranges. The high temperature relaxation mode, α′, has a large dielectric constant, which disappears at the melting temperature of the polyamide crystal in the sample. The relaxation times for the segmental motion, αs, were different for the samples, which is attributed to the difference in the composition of the uncrystallized polyamide segments in the amorphous domain. The glass transition temperature estimated from DMTA is located between those of constituting polymers. On the other hand, the activation energy of β‐mode observed at low temperatures is the same for samples with different polyamide ratios, which is attributed to the local motion of the polyether segments. The uncrystallized polyamide segments are miscible with the polyether segments, which results in a lowering of the glass transition temperature of the amorphous domain and enlarges the temperature range of the rubber state of the copolymer due to the high melting temperature of the polyamide segments. © 2016 Society of Chemical Industry  相似文献   

19.
Nano‐sized cadmium oxide (CdO) was synthesized using a sol–gel method and mixed with poly(vinyl chloride) (PVC). X‐ray diffraction and high‐resolution transmission electron microscopy measurements indicated that the average particle size of the CdO is about 70.18 nm. Scanning electron microscopy images revealed a good dispersion of CdO nanoparticles on the surface of the PVC films. The optical energy band gap (Eg) showed a decrease from 5.08 to 4.88 eV with increasing the CdO content. The refractive index dispersion of the nanocomposite films was found to obey the single oscillator model. The dispersion parameters were changed by CdO incorporation. According to the frequency and temperature dependence of the dielectric constant (ε′), the observed αa‐relaxation peaks were assigned to the micro‐Brownian motion of the polymer main chains. The influence of CdO nanoparticles content on the ac conductivity and the activation energy of PVC nanocomposite films were discussed. It was found that both dielectric and optical properties were reinforced by the adding of CdO nanoparticles to the PVC matrix. Finally, the results of the present system are compared with those of similar materials. POLYM. COMPOS., 35:1842–1851, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
A systematic dielectric study of 1 kHz was carried out on chloroprene rubber, mixed with different types of carbon black and different concentrations. The measurements were carried out at room temperature (25°C). It was found that better dielectric properties cannot be achieved when the carbon black concentration exceeds 60% for MT, 40% for SRF, and 20% for both HAF and SAF. In addition, the relation between the dielectric constant ε and the modulus of elasticity E for the different mixes were studied. From this study it was found that, up to certain carbon black volume concentration (depending on the filler type), the modulus equation Ef = E0 (1 + 0.67φC + 1.62φ2) can be used to relate the dielectric properties εf and εo of carbon black filled and unfilled rubber compounds. The dielectric measurements were also related to the particle size and the structure of carbon black.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号