首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Starch and montmorrilonite (MMT) were used as raw materials for synthesizing starch‐graft‐poly[acrylamide (AM)–acrylic acid (AA)]/MMT superabsorbent nanocomposite by graft and intercalation copolymerization reaction of starch, AM, and AA in the presence of organic MMT micropowder in aqueous solution. Major factors affecting water absorbency such as weight ratio of monomers to starch, weight ratio of AM to AA, neutralization degree of AA, amount of crosslinker, initiator, and MMT were investigated. The superabsorbent nanocomposite synthesized under optimal synthesis conditions exhibits absorption of 1120 g H2O/g sample and 128 g H2O/g sample in deionized water and in 0.9 wt % NaCl solution, respectively. IR spectra showed that the graft copolymerization between  OH groups on MMT and monomers took place during the reaction, and that crystal interlayer was pulled open in the superabsorbent nanocomposite. X‐ray diffraction analysis showed that the crystal interlayer of MMT was pulled open to 2.73 nm, and thus formed nanometer exfoliation composite material. Thermogravimetric analysis showed that starch‐graft‐poly (AM–AA) superabsorbent nanocomposite (8 wt % MMT) has good thermal stability. This superabsorbent nanocomposite with excellent water absorbency and water retention, being biodegradable in nature, economical and environment friendly, could be especially useful in industry, agricultural, and horticultural applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A kind of superabsorbent based on the monomers maleic anhydride (MA) and acrylic acid (AA) was prepared by solution polymerization using ammonium peroxodisulfate (AP) and sodium bisulfite (NaHSO3) as initiator, and N-maleyl chitosan (N-MACH) as cross-linker. Effects of process parameters such as the amount of cross-linker, mass ratio of MA to AA, and neutralization degree of AA on the water absorbency of superabsorbents are discussed. The results indicated the water absorbency of superabsorbents increased and then decreased with the increase of MA content, the amount of the N-MACH cross-linker, and the neutralization degree of AA. Under the optimal conditions, the water absorbency of superabsorbents could reach l560.42 g/g and 83.7 g/g in distilled water and in 0.9% NaCl solution, respectively. In addition, to enhance the water absorbency of superabsorbents in 0.9% NaCl solution, polyvinyl alcohol (PVA) was introduced as interpenetrating polymer in the network and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) was introduced as comonomer. It was proved that PVA and AMPS could effectively improve the water absorbency of superabsorbents both in distilled water and 0.9% NaCl solution.  相似文献   

3.
A novel poly(acrylic acid)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on attapulgite micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator in aqueous solution. The effects on water absorbency of such factors as reaction temperature, initial monomer concentration, degree of neutralization of AA, amount of crosslinker, initiator, and attapulgite were investigated. These crosslinked superabsorbent composites were characterized by thermogravimetetric analysis and scanning electron microscopy. The graft copolymerization reaction of AA on attapulgite micropowder was characterized by FTIR. The water absorbencies for these superabsorbent composites in water and saline solutions were investigated and water‐retention tests were carried out. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibited an absorption of 1017 g H2O/g sample and 77 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1596–1603, 2004  相似文献   

4.
A new cellulose‐based superabsorbent polymer, carboxymethyl cellulose‐graft‐poly(acrylic acid‐co‐acrylamide), was prepared by the free‐radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto carboxymethyl cellulose (CMC) in the presence of N,N′‐methylenebisacrylamide as a crosslinker with a redox couple of potassium persulfate and sodium metabisulfite as an initiator. The influences of reaction variables such as the initiator content, crosslinker content, bath temperature, molar ratio of AA to AM, and weight ratio of the monomers to CMC on the water absorbency of the carboxymethylcellulose‐graft‐poly(acrylic acid‐co‐acrylamide) copolymer were investigated. The copolymer's structures were characterized with Fourier transform infrared spectroscopy. The optimum reaction conditions were obtained as follows: the bath temperature was 50°C; the molar ratio of AA to AM was 3 : 1; the mass ratio of the monomers to CMC was 4 : 1; and the weight percentages of the crosslinker and initiator with respect to the monomers were 0.75 and 1%, respectively. The maximum water absorbency of the optimized product was 920 g/g for distilled water and 85 g/g for a 0.9 wt % aqueous NaCl solution. In addition, the superabsorbent possessed good water retention and salt resistance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1382–1388, 2007  相似文献   

5.
An interpenetrating network of acrylic acid (AA)‐based superabsorbents and sodium PVA sulfate (SPS) were prepared by copolymerizing AA and N,N′‐methylene bisacrylamide as a crosslinking monomer in a solution of SPS with KPS, a radical initiator. The SPS was prepared through the sulfation of the hydroxyl groups of PVA with DMF‐SO3 complex in DMSO. The AA‐based superabsorbent interpenetrated with SPS (SA‐IP‐SPS) showed superior properties such as higher water and saline absorbency, absorbency under load (AUL), and water retention value (WRV) compared with AA‐based superabsorbent due to the interpenetrated SPS. The maximum water and saline absorbency of SA‐IP‐SPS was 1753 and 125.6 g/g, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2525–2532, 2000  相似文献   

6.
Summary: A new superabsorbent polymer, PAMA, has been prepared in an aqueous solution using acrylamide (AM) and 2‐acrylamido‐2‐methyl‐propanesulfonic acid (AMPS) as monomers, potassium persulfate (PPS) as initiator, and N,N′‐methylenebisacrylamide (NMBA) as cross‐linker. The absorbing properties and water retention of PAMA have been investigated. It is found that the absorbency of PAMA can reach 2 451 and 119 g · g?1 in distilled water and in 0.9 wt.‐% NaCl solution, respectively. This copolymer also can absorb a large amount of pure methanol (277 g · g?1), a property that has not been reported for the other superabsorbent polymers in the literature. The swelling behavior of PAMA in some water/organic solvent mixtures and water retention of PAMA in sand have been investigated.

Water retention of the PAMA in sand at 80 °C. 1) Sample containing PAMA; 2) Sample without PAMA.  相似文献   


7.
A novel chicken feather protein‐g‐poly (potassium acrylate)/polyvinyl alcohol (CFP‐g‐PKA/PVA) semi‐IPNs superabsorbent resin (SAR) based on feather protein, acrylic acid (AA), and polyvinyl alcohol (PVA) was synthesized by graft copolymerization and semi‐interpenetrating technology. The results from FTIR, SEM, and TGA analysis showed that both CFP and PVA reacted with PKA during the polymerization process. The effects of AA, PVA, initiator and crosslinker content on water absorbency of semi‐IPNs SAR were studied. The swelling behavior in various pHs and saline solutions were also investigated. The water absorbency of SAR reached the maximum at pH = 6. The effect of the five cations on swelling had the following order: Al3+ > Ca2+ > Mg2+ > K+ > Na+. The highest water absorbency in distilled water and 0.9 wt % NaCl solutions were 714.22 and 70.08 g g?1, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39748.  相似文献   

8.
A novel poly (acrylic acid)/sodium humate superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) on sodium humate micropowder using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and potassium peroxydisulfate (KPS) as an initiator in aqueous solution. The effects on water absorbency of factors such as reaction temperature, initial monomer concentration, and degree of neutralization of AA, amount of crosslinker, initiator, and sodium humate were investigated. The superabsorbent composite was characterized by scanning electron microscopy, and the graft copolymerization reaction of AA on sodium humate micropowder was characterized by IR spectroscopy. Results obtained from this study show that the water absorbency of the superabsorbent composite synthesized under optimal conditions for synthesis with a sodium humate content of 5.3% exhibited absorption of 684 g H2O/g sample in distilled water. Water‐retention in soil is enhanced by the use of the superabsorbent composite. The effect of superabsorbent composite on the growth of corn is reported. The superabsorbent composite may be of use as water management materials for agriculture purposes in desert and drought‐prone areas. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5137–5143, 2006  相似文献   

9.
A new konjac glucomannan (KGM)-based superabsorbent polymer, KGM-g-poly(acrylic acid-co-acrylamide), was prepared by the free radical grafting solution polymerization of acrylic acid (AA) and acrylamide (AM) monomers onto KGM in the presence of N,N′-methylenebisacrylamide as a crosslinker with potassium persulfate as an initiator. The effects of reaction parameters, including the amount of crosslinking agent and initiator, the weight ratio of both (AA + AM) to KGM and AM to (AA + AM), neutralization degree of AA, bath temperature, and reaction time, on the water absorbency of the superabsorbent were investigated. The Fourier transform infrared spectroscopy was used to characterize the structures of the copolymer. The maximum water absorbency of the optimized product was 650 g/g for distilled water and 70 g/g for a 0.9 wt % aqueous NaCl solution. Furthermore, the water retention of the copolymer in soils was studied. The effect of the copolymers on the aggregate distribution of soils was also evaluated. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
In this work, a series of novel hydroxyethyl cellulose‐ g‐poly(acrylic acid)/attapulgite (HEC‐g‐PAA/APT) superabsorbent composites were prepared through the graft polymerization of hydroxyethyl cellulose (HEC), partially neutralized acrylic acid (AA), and attapulgite (APT) in aqueous solution, and the composites were characterized by means of Fourier‐transform spectroscopy, scanning electron microscopy, and transmission electronmicroscopy. The effects of polymerization variables including concentrations of the initiator and crosslinker and APT content on water absorbency were studied, and the swelling properties in various pH solutions as well as the swelling kinetics in various saline solutions were also systematically evaluated. Results showed that the introduction of 5 wt% APT into HEC‐g‐PAA polymeric network could improve both water absorbency and water absorption rate of the superabsorbent composites. In addition, the superabsorbent composites retained high water absorbency over a wide pH range of 4–10, and the swelling kinetics of the superabsorbent composites in CaCl2 and FeCl3 solutions exhibited a remarkable overshooting phenomenon. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

11.
To better use the waste nameko mushroom substrate (WNMS) and prevent its pollution into the environment, a novel superabsorbent polymer was synthesized via the UV irradiation copolymerization of acrylic acid and WNMS in the presence of an initiator (dimethoxy‐2‐phenylacetophenone and ammonium persulfate) and crosslinker N,N′‐methylenebisacrylamide. The factors that had an influence on the water absorbency of the superabsorbent polymer were investigated and optimized. Under the optimized conditions, WNMS–poly(acrylic acid) was obtained. Its swelling behaviors, which followed the pseudo‐second‐order swelling kinetic model, were investigated in distilled water (1701 g/g) and a 0.9 wt % NaCl solution (388 g/g). The water absorbency was 1011 g/g in a 0.1 wt % urea solution and 80% amount of urea diffused into the gels. The urea diffusion followed a Fickian diffusion mechanism. Moreover, the product showed excellent water retention capabilities under the condition of high temperature or high pressure. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40471.  相似文献   

12.
A series of novel multifunctional poly (acrylic acid‐co‐acrylamide) (PAA‐AM)/organomontmorillonite (O‐MMT)/sodium humate (SH) superabsorbent composites were synthesized by the graft copolymerization reaction of partially neutralized acrylic acid and acrylamide on O‐MMT micropowder and SH with N,N′‐methylene bisacrylamide as a crosslinker and ammonium persulfate as an initiator in an aqueous solution. The superabsorbent composites were characterized by means of Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and thermogravimetric analysis. The effect of the relative weight ratio of SH to O‐MMT on the water absorbency was studied, and the results indicated that the best water absorbency of 591 g/g in distilled water was obtained when an O‐MMT content of 20 wt % and an SH content of 30 wt % were incorporated. The superabsorbent composite possessed a good capacity for water retention; even after 30 days, 24.4 wt % of water could still be saved by the sand soil containing 1.0 wt % superabsorbent composite. The results from this study show that the water absorbency of a superabsorbent composite is improved by the simultaneous introduction of O‐MMT and SH into a PAA‐AM network in comparison with the incorporation of only O‐MMT or SH. Also, in comparison with PAA‐AM/MMT/SH, an appropriate amount of O‐MMT can benefit the developed composites with respect to their water absorbency, salt resistance, and capacity for water retention in sand soil. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
A superabsorbent composed of waste polystyrene, starch, and acrylic acid was prepared through emulsion polymerization. The effects of major factors such as starch, acrylic acid, initiator, crosslinker, and bentonite contents and the neutralization degree of acrylic acid on water absorbency were investigated to obtain optimum conditions with high swelling capacity. The superabsorbent hydrogel was characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The FTIR results confirmed that the grafting polymerization took place among the polystyrene, acrylic acid, starch, and bentonite. The introduction of bentonite particles into the polystyrene‐g‐poly (acrylic acid)‐co‐starch system could increase the water absorbency. The superabsorbent composite containing 3 wt % bentonite had the highest water absorbency (500 g/g in distilled water and 49 g/g in 0.9 wt % NaCl solution). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Crosslinked sodium polyacrylate was prepared by solution polymerization with N,N‐methylene‐bisacrylamide (bisAM) as crosslinking agent; it was subsequently surface‐crosslinked by ethylene glycol diglycidyl ether (EGDE) and then was modified with inorganic salt to obtain a superabsorbent with water absorbency in 0.9 wt % NaCl aqueous solution at atmosphere and applied pressure (P ≈ 2 × 103 Pa) of 55 and 20 g.g?1, respectively. Moreover, it also had excellent hydrogel strength. The effects of reaction temperature, reaction time, neutralization degree (ND) of acrylic acid, amount of initiator, crosslinking agent, and surface‐crosslinking agent, mass ratio of inorganic salt to initial superabsorbent, molar ratio of sodium aluminate (NaAlO2) to potassium dihydrogen hyphosphate (KH2PO4) on water absorbency (WA) in 0.9 wt % NaCl aqueous, and the hydrogel modulus were investigated and optimized. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2532–2541, 2004  相似文献   

15.
Superabsorbents used in agricultural and ecological projects with low‐cost, slow‐release fertilizers and environmentally friendly characteristics have been extensively studied. The use of a natural polymer as the matrix and then further polymerization with some functional material has become the preferred method. In this work, with natural guar gum (GG), partially neutralized acrylic acid, and sodium humate (SH) as the raw materials, ammonium persulfate as the initiator, and N,N′‐methylenebisacrylamide (MBA) as the crosslinker, GG‐g‐poly(sodium acrylate) (PNaA)/SH superabsorbents were synthesized through a solution polymerization reaction and were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The effects of the SH content and MBA concentration on the water absorbency were investigated. The results showed that the introduction of SH into the GG‐g‐PNaA system could improve the water absorbency, swelling rate, pH‐resistant property, and reswelling capability, and the superabsorbent containing 15 wt % SH had the highest water absorbency of 532 g/g of sample in distilled water and 62 g/g of sample in a 0.9 wt % NaCl solution. The slow release in water and water retention in sandy soil tests revealed that the superabsorbent could act as a fertilizer as well as an effective water‐saving material for agricultural applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A novel starch‐graft‐poly(acrylamide)/attapulgite superabsorbent composite was synthesized by graft copolymerization reaction of starch, acrylamide (AM), and attapulgite micropowder using N.N‐methylene‐bisacrylamide (MBA) as a crosslinker and ammonium persulphate (APS) as an initiator in aqueous solution, followed by hydrolysis with sodium hydroxide. The effects on water absorbency, such as amount of crosslinker, initiator, attapulgite, weight ratio of acrylamide to starch in the feed, gelatinization conditions of starch and molar ratio of NaOH to acrylamide, and so forth, were investigated. These superabsorbent composites were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The water absorbencies for these superabsorbent composites in water and saline solution were investigated, and water retention tests were carried out. Results obtained from this study showed that the water absorbency of superabsorbent composite synthesized under optimal synthesis conditions with an attapulgite content of 10% exhibit absorption of 1317 g H2O/g sample and 68 g H2O/g sample in distilled water and in 0.9 wt % NaCl solution, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1351–1357, 2005  相似文献   

17.
We have synthesized series of superabsorbent polymers (SAPs) by solution free radical polymerization of acrylic acid (AA), acrylamide (AM) with different functional monomers (FM). Three functional monomers including zwitterionic monomer [3‐(methacryloylamino) propyl] dimethyl (3‐sulfopropyl) ammonium (MPDSA), cationic monomer (3‐acrylamidopropyl) trimethylammonium chloride (APTAC) and anionic monomer 2‐acrylamidoglycolic acid monohydrate (AGAM) were selected to provide different charged groups on the superabsorbents. The effect of reaction parameters, such as degree of neutralization, content of initiator and crosslinker on the swelling capacity were assessed. The water absorbency of the superabsorbent were characterized in the distilled water, 0.9 wt % NaCl solution and the mixed solution containing 60 mg L?1 CaCl2 and 30 mg L?1 MgCl2, respectively. In addition, the swelling rate and water retention capacity in the soil were also investigated. Finally, the mechanism of different absorbency induced by the variety kinds of functional monomers was studied by XPS and FTIR, and tentative interpretation was presented as well. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
A series of superabsorbent composites were prepared from acrylic acid (AA), acrylamide (AM), and Cloisite® 30B by aqueous solution polymerization technique using ammonium peroxodisulfate (APS) as initiator. The interaction of the organically modified nanoclay with PAA‐co‐PAM copolymer was verified by FTIR, whereas the morphology of the composite was studied by Scanning Electron Microscopy (SEM). The water absorbency in deionized water and saline water of the synthesized nanohydrogels was measured by calculating their percentage swelling ratio. The effects of copolymerization, monomer ratio, clay content, and temperature on the water absorbency were studied. The results indicated a considerable increase in swelling ratio by proper monomer proportion and incorporation of optimum clay percentage into the copolymer matrix. It was found that the nanohydrogel acquired highest water absorbency with 2% clay loading. The reswelling ability and water retention capacity of the PAA‐co‐PAM hydrogel and PAA‐co‐PAM/clay nanohydrogel were also measured. The water absorbency was found to increase after each reswelling for which it may be useful as recyclable superabsorbent material. The results of water retention capacity of the nanohydrogel were also encouraging and find application in agriculture, especially in drought‐prone areas. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A novel superabsorbent polymer composite was successfully synthesized from waste material cultured Auricularia auricula (WMCAA) and poly (acrylic acid‐co‐acrylamide) (P(AA‐co‐AM)) using microwave irradiation. Optimal synthesis conditions were determined by investigating the water absorbency of the superabsorbent composite. The effects associated with weight ratios of WMCAA, acrylamide (AM) monomers, initiators, and acrylic acid (AA) crosslinkers, as well as the degree of neutralization of AA were examined. The maximum water absorbencies were found to be 1548 g/g (distilled water) and 72 g/g (0.9% NaCl solution). Fourier transform infrared spectroscopy (FTIR) was applied to determine the molecular structure of the superabsorbent composite, and scanning electron microscopy (SEM) was used to demonstrate the characteristic compact and porous structure of the material. Further studies conducted via transmission electron microscopy (TEM) revealed the formation of a novel interpenetrating polymer network structure. Thermogravimetry/differential thermal (TG/DTG) analysis demonstrated improved thermal stability in the composite material compared with WMCAA. Additionally, high water absorption rates observed in the polymer during the swelling process indicated first‐order kinetics. The water absorption and adsorption of the superabsorbent composite were studied in a variety of fertilizer solutions, revealing an indirect relationship between water absorbing ability and fertilizer concentration. Conversely, a direct relationship was observed between absorbed fertilizer and fertilizer concentration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3674–3681, 2013  相似文献   

20.
In order to investigate whether the particle sizes of inorganic additives in polymer have an influence on the flame‐retardant and other properties of the polymer, five types of Mg3Al–CO3 layered double hydroxide (LDHs) with particle diameters of 80–100, 200–350, 500–550, 550–600, and 700–900 nm were synthesized using a hydrothermal method. The obtained Mg3Al–CO3 LDHs were treated using the aqueous miscible organic solvent treatment method to give highly dispersed platelets in Polypropylene (PP). The thermal stability, flame retardancy, and mechanical properties of the PP/AMO–LDH nanocomposites were investigated systematically. The results showed that the thermal stability and flame retardancy of PP could be improved after incorporating AMO–LDHs. The temperature at 50% weight loss (T0.5) of PP/LDH (700–900 nm) nanocomposites with a LDH loading of 15 wt % was increased by 57 °C. When the LDHs loading was 40 wt %, the peak heat release rate (PHRR) of the PP/LDH nanocomposites with small LDHs particle sizes (<350 nm) was decreased by ca. 58%. The limiting oxygen index was increased by 5% for PP/LDH (80–100 nm) nanocomposites. The response surface regression results also indicated that both LDH particle size and loading have influence on PHRR, heat release capacity, tensile strength, and elongation at break. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46204.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号