首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nylon‐66 is a typical semicrystalline polymer that can be crosslinked using crosslinking agents and electron beam irradiation. Hybrid nylon‐66‐based membranes are more porous but denser compared to the pure nylon‐66 membrane. Besides that, hybrid nylon‐66 membranes exhibit higher water uptake and severe swelling in water. Si/nylon‐66 membranes were prepared by adding γ‐aminopropyltriethoxylsilane (APTEOS). Crosslinked silica in nylon‐66 membranes is confirmed with high gel content and Fourier transform infrared peaks, but XRD results showed that there is a low crystalline degree in these membranes. The thermal stability of hybrid nylon‐66 membranes is also less affected by APTEOS. The crosslinking agent only improves storage modulus in hybrid nylon‐66 membranes. After irradiation, it is learned that APTEOS improves separation performance of nylon‐66 membranes. However, excessive APTEOS causes the ratio of effective thickness over porosity (Δx/Ak) reduces significantly resulting a lower permeability membrane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The morphology and aggregation structure of electron beam (EB)-cured microporous polyurethane-acrylamide film was investigated. The urethane-acrylamide prepolymer was synthesized by the reaction of poly(butylene adipate)diol, 4,4′-diphenylmethane diisocyanate, and N-(hydroxymethyl)acrylamide. It was found from scanning electron microscopy that the urethane-acrylamide film, which was prepared by using a methyl ethyl ketone and dimethylformamide (3:1 v/v) mixture as casting solvent, had a microporous structure with pore size of several micrometres, and that the morphology was fixed by EB irradiation. The pore volume of the EB-cured microporous film was determined to be about 460 mm3 g−1 by mercury porosimetry. The micropores were not destroyed even after immersing in solvent, possibly because the cured film had high crystallinity and dense crosslinking. Moreover, it was found by X-ray photoelectron spectroscopy that terminal portions of urethane-acrylamide were localized at the film surface.  相似文献   

3.
Dynamic mechanical thermal analysis (DMTA) has been applied on medical grade ultra high molecular weight polyethylene of different crosslink density as prepared by electron beam irradiation to probe for contributions from crosslinking as well as crystallization. The crosslinking proceeds at a crystalline structure with a crystallinity about 50%. With increasing irradiation dose from 0 to 110 kGy, the molar mass between adjacent crosslinks decreases significantly to reach 3170 g/mol at lowest, whereas the crystallite thickness changes and new thin lamellae grow at almost constant degree of crystallinity. From DMTA in the entire temperature range from ?150 to +140°C and the angular frequency range from 0.6 to 135.4 Hz, three relaxation processes γ, β, and α of different temperature position and activation energy are distinguished. The corresponding chain mobility has been discussed as a sensitive discriminator for the coexisting crosslinked and lamellar phases showing the same dimension of a couple of 10 of nanometres. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
In this article, we report the synthesis of crosslinked chitosan using 8 MeV electron beam (EB) irradiation in the presence of carbon tetrachloride. The crosslinked chitosan is characterized by dissolution, Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning colorimetry (DSC), and nanoindentation studies. The insolubility of irradiated films in acetic acid indicates that chitosan has undergone crosslinking reaction. FTIR analysis also confirms the crosslinked structure of chitosan. Mechanical properties such as elastic modulus and hardness are calculated from the nanoindentation data. Modulus and hardness of chitosan increase with increase in the irradiation dose due to the increase in the crosslinking. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Nylon 66 nanocomposites were prepared by melt compounding of nylon 66 with organically modified montmorillonite (MMT). The organic MMT was pre‐modified with about 14 wt% of ammonium surfactant, much lower than the 35–46 wt% in most commercial organic MMT powders. Transmission electron microscope observation indicated that the MMT layers were well exfoliated in nylon 66 matrix. Dynamic mechanical analysis confirmed the constraint effect of exfoliated MMT layers on nylon 66 chains, which benefited the increased storage modulus, increased glass transition temperature and reduced magnitude of alpha relaxation peak. The effects of organic MMT loading levels on reinforcement and fracture behaviour of the nanocomposites were evaluated using tensile and three‐point bending tests. The addition of the organic MMT clearly increased Young's modulus and tensile strength but decreased ductility and fracture toughness of nylon 66. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
In the present investigation the effect of electron beam irradiation on the mechanical properties of thin films of Polypropylene (PP) were measured. The dielectric properties of PP films were carried out in the frequency range from 20 Hz to 1 MHz at various DC bias potential. All measurements were carried out at room temperature. It is found that the electron beam irradiation caused an increase in Young's Modulus of PP film dose of up to 70 kGy were applied, but tensile strength and % elongation at break were found to be decrease with the increasing dose rate. The significant changes were observed in the case of dielectric constant and dielectric loss for electron irradiated PP films. The DSC results indicate that irradiation on PP films changes the thermal behavior. Minor differences in FTIR spectra were observed after irradiation treatment. It is observed that, the effect of radiation damage results in improvement in mechanical strength of the films. The increased dielectric constant and dependence of the bias voltage in case of irradiated and unirradiated PP films has been reported. It is suggested that, the PP films modified with the electron beam irradiation can be used as a good dielectric material for different electronic devices. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
Nylon 66/polypropylene (PP) blends containing maleated polypropylene and organo‐montmorillonite (OMMT) have been prepared by melt compounding using a well‐dispersed master‐batch of nylon 6/OMMT nanocomposite as the source of OMMT. The effects of OMMT platelets on the compatibility and properties of the blends have been investigated. The blend morphology has been observed by the use of field emission scanning electron microscopy, showing a sharp decrease in domain size. The dispersion and location of OMMT have been investigated by X‐ray diffraction and transmission electron microscopy. A high‐density occupation of OMMT at the interface (i.e. Nylon‐g‐PP interphase region) is revealed by Fourier transform infrared spectroscopy and thermogravimetric analysis of the extraction residue after the removal of nylon phase by formic acid. A significant gain in stiffness is realized with the use of OMMT while the toughness of the material is maintained. The possible mechanism of compatibilization also is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Ultrafine carboxylated styrene–butadiene rubber(CSBR) powders were prepared by using gamma irradiation and following spray‐drying method. The influences of dose rate, absorbed dose, and sensitizer content on the crosslinking density of CSBR latices were studied in detail. Then the ultrafine CSBR powders were used to toughen nylon 6. The toughness and thermal properties of nylon 6/CSBR blends were measured by using notched lzod impact test and differential scanning calorimetry and thermogravimetry, respectively. Results showed that the crosslinking density of CSBR increased with increasing of dose and sensitizer content, and it is independent on dose rate. The notched Izod impact strength of nylon 6 under room temperature increased after incorporation of irradiation crosslinked CSBR powders with appropriate crosslinking density. The morphology of higher impact nylon 6/CSBR blends indicated that the finer dispersion existed with dispersed particles of 150‐nm diameter. Fracture morphology of nylon 6/CSBR blend suggested that the shear yielding in matrix is the primary toughening mechanism for nylon 6/CSBR blends. The crystallinity of nylon 6/CSBR blends decreased slightly compared with pure nylon 6, whereas the addition of CSBR powders had little influence on the thermal stability of nylon 6. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3040–3046, 2002  相似文献   

9.
Poly(acrylic acid) (PAA) was dissolved in water, and the solution was irradiated with high‐energy electrons. The formation of macroscopic gel was studied as a function of the radiation dose, the pH of the aqueous solution, and the concentration of added salt. Gelation by intermolecular crosslinking was found at low pH values of 2–4, whereas at pH greater or equal to 5, no gel was formed by electron beam irradiation. Nevertheless, by adding monovalent salt the gel formation was enhanced at intermediate pH values. The intermolecular crosslinking was assumed to be inhibited by electrostatic repulsive forces when the macromolecules of PAA are negatively charged and the ionic strength of the solution is low. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The radiation‐induced crosslinking, compatibility, and surface modification of low density polyethylene/ethylene vinyl acetate blends (LDPE/EVA) were investigated. The structural and physical properties were characterized in terms of gel content, hot set, mechanical properties, contact angle, and surface free energy. The highest crosslink density was obtained at 20 wt % of EVA. Gel content of LDPE/EVA blends was increased with increasing irradiation dose, vinyl acetate (VA), and EVA contents. The hot set results are consistent with the gel content data. Mechanical testing showed that the tensile strength of samples increased with increasing irradiation dose up to 180 kGy, whereas the elongation at break was decreased with increasing irradiation dose. Contact angle measurements showed that the surface hydrophillicity of LDPE blend was increased with increasing irradiation dose and contents of both VA and EVA. The surface free energy was greatly dependent on irradiation dose and content of both VA and EVA. The total surface free energies of different LDPE formulations were in the range 17.25–32.51 mN/m, in which the polar (pσ) and disperse (dσs) values were within the range 16.52–26.6 and 0.9–5.91 mN/m, respectively. In conclusion, electron beam irradiation and blending LDPE with EVA improved the wettability or adhesion properties of LDPE/EVA blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The modifications in microstructural, optical, and photoluminescence properties of the Lexan polycarbonate (bisphenol‐A‐polycarbonate) films exposed to different electron doses have been studied using UV–vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), positron annihilation lifetime spectroscopy, photoluminescence spectroscopy, and scanning electron microscopy (SEM). The obtained UV–vis spectroscopy results showed decrease in optical energy gap, optical activation energy, and increase in number of carbon atoms per cluster with increase in electron dose. The chemical changes in electron irradiated polymers due to chain scission and reconstruction have been observed from FTIR spectroscopy. The correlation of positron lifetime study with optical measurement is obtained, and electron irradiation‐induced microstructural modifications within the polymer is understood. SEM result shows the degradation of Lexan polymer after electron irradiation. The mechanical properties and average molecular weight of Lexan decrease after irradiation, whereas average number of chain scissions per original polymer molecule increases. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
The changes produced by the effects of annealed and drawn fibers on the microstructure and macrostructure of nylon 66 fibers are considered. The optical properties and strain produced in nylon 66 fibers under different conditions are measured interferometrically at room temperature. Structural parameters are calculated such as the average work per chain, the work per unit volume, the reduction in entropy due to elongation, and the work stored in the body as strain energy. The evaluation of the density aided the calculation of the crystallinity, the mean square density fluctuation, the isotropic refractive index, the harmonic mean polarizability of the dielectric, and the harmonic mean specific refractivity. In addition, the resulting data are utilized to calculate the optical stress coefficient and the optical configuration and to apply the Mooney–Rivlin equation to determine its constants. Also, the number of crystals per unit volume and the average orientation angle for uniaxial stretching are calculated by the extension ratio. The relations between the optical, mechanical, and thermal changes with different parameters are given for the studied fibers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 916–928, 2002; DOI 10.1002/app.10107  相似文献   

13.
《Ceramics International》2017,43(14):11218-11224
Curing green fibres infusible is an essential procedure for the preparation of SiBNC ceramic fibres. Previously, green fibres had been fabricated by one-pot synthesis of polyborosilazane (PBSZ) and melt-spinning. In this paper, we attempted to use the method of electron beam irradiation to crosslink green fibres. The variation of molecular structures from green fibres to cured fibres and the properties of sintered SiBNC fibres were investigated. Via electron beam irradiation, the free radicals are formed at the C atoms and Si atoms on the -N-SiH(CH3)- main chain units and terminal -Si(CH3)3 groups. The radicals react with each other to produce cross-linking, coupling and grafting among PBSZ chains, which all contribute to improvement of the cross-linking density of green fibres. The cured fibres performed a high ceramic yield of 80.4 wt%. After pyrolysis at 1500 °C, SiBNC ceramic fibres were acquired, which exhibited a good flexibility with 12 µm in diameter and 1.22 GPa in tensile strength. The obtained fibres could remain amorphous up to 1700 °C and showed no mass loss at this temperature.  相似文献   

14.
Ethylene–methyl acrylate copolymer (Elvaloy 1330) was irradiated by an electron beam at different levels of radiation both in the presence and absence of a trimethylolpropane trimethacrylate sensitizer at various dosages of incorporation. The mechanical, thermal, and electrical properties of these samples were compared. The mechanical properties were observed to reach an optimum maximum around 6 Mrad of irradiation and 1 phr of sensitizer incorporation. Furthermore, an increase in either the radiation dose or the sensitizer level helped very little to further modify the properties. The thermal properties as determined by the thermogravimetric analysis and differential scanning calorimetry studies were quite supportive of the observation made during the study of the mechanical properties. The thermal stability of the irradiated samples underwent an increase with increasing electron‐beam dosage. In a manner similar to those of the mechanical properties, the increase in thermal stability was found to reach a maximum at a particular level of treatment and sensitizer incorporation, beyond which there was marginal or no effect at all. The α transition temperature underwent a substantial increase with increasing crosslink density, as evidenced by the increase in gel content with increasing proportion of electron‐beam radiation dose. The other glass‐transition temperature, however, appeared to remain unaffected. The electrical properties, as described by the dielectric constant, volume resistivity, and breakdown voltage, appeared to be affected very little by the electron‐beam radiation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Solutions of carboxymethyl sago pulp (CMSP) of various degree of substitution were irradiated with electron beam of various radiation doses. The gelation dose (Dg) and po/qo ratio (po is degradation density, qo is crosslinking density) is dependent on CMSP concentration and degree of substitution. In the range of concentrations of 10% to 80% (w/v) CMSP with degree of substitutions of 0.4, 0.6, and 0.8, the po/qo ratio decreases with increasing %CMSP showing that crosslinking processes are dominating and increasing the gel network of the CMSP hydrogel. The fourier transform infrared spectra of CMSP hydrogels of degree of substitutions of 0.4, 0.6, and 0.8 with percentage of gel fractions 25, 35, and ≥ 40 show differences in the intensity of the absorption bands at 1020–1100, 1326, and 1422 cm?1 with different degree of substitutions and percentage of gel fraction (%GF) that correspond to different extents of chain scission and crosslinking. The swelling behavior in water shows that CMSP hydrogels could absorb 3500–5300% of water by 1 g of CMSP hydrogel. The ability to absorb water increases with the decrease of degree of substitution and %GF of the CMSP hydrogels. It is also observed that the optimum pH for swelling CMSP hydrogel is at pH 7. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

16.
The structure and morphology of isotactic polypropylene (iPP), functionalized by electron beam irradiation at room temperature in air, are investigated by elementary analysis, FT‐infrared (FTIR) spectroscopy, electron spectroscopy for chemical analysis (ESCA), polariscope, and static contact angle. Elementary analysis reveals that the element oxygen has been introduced onto iPP chains after electron beam irradiation. In addition, as shown from FTIR spectra, oxygen‐containing groups, such as carbonyl, carboxyl, and ether groups, are introduced onto iPP molecular chains. The dependence of oxygenation extent (as measured by O1S/C1S value of ESCA spectra) on electron beam dose is obtained. Under polariscope, it can be observed that the dominant alpha phase appears to become more enhanced, and there is no crystalline phase transition. The static contact angle of iPP decreases with increasing dose. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 75–82, 2000  相似文献   

17.
Electron beam irradiation effects of ten kinds of polymers containing various aromatic rings linked by functional groups in the main chain (aromatic polymer) were studied with reference to change in tensile properties. The polymers studied were polyimides ‘Kapton H’, and ‘UPILEX’, polyetherimide ‘ULTEM’, polyamides ‘A-Film’, and ‘APH-50 (nomex type paper)’, poly-ether-ether-ketone ‘PEEK’, polyarylate ‘U-Polymer’, polysulphones ‘Udel-Polysulphone’, and ‘PES’, and modified poly(phenylene oxide) ‘NORYL’. Irradiation was carried out by use of electron beam at a dose rate of 5 × 103 Gy s?1 at room temperature. The elongation at break was the most severely influenced by the irradiation and it decreased with increasing dose. The order of radiation resistivity which was evaluated from the dose required for the elongation to become 50% and 20% of the initial value was as follows:Polyimide>PEEK>polyamide>polyetherimide>polyarylate>polysulphone, poly(phenylene oxide)Based on the above experimental results, the following order was proposed as for the radiation stability of the aromatic repeating units composing the main chain:
  相似文献   

18.
A series of low‐density polyethylene (LDPE) blends with different amounts of ethylene–vinyl–acetate (EVA) was prepared and irradiated with 10 MeV electron beam in the range of 0–250 kGy at room temperature in air. EVA was used as a compatibilizer and softener in four different amounts: 5, 10, 20, and 30 wt %, based on polyethylene (PE). The crosslinking of the samples was studied on the basis of gel‐content measurements as well as some thermal and mechanical properties of the specimens. The results indicated that the LDPE and LDPE–EVA blends could be crosslinked by a high‐energy electron beam, of which their thermal and mechanical properties changed effectively, however, because of EVA content of the polymer; the blends were more sensitive to lower doses of radiation. These studies were carried out to obtain a suitable compound for heat‐shrinkable tubes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1049–1052, 2004  相似文献   

19.
Various unsaturated polyfunctional monomers were kneaded into cis-1,4-polyisoprene containing fillers under 80°C and then irradiated using an electron beam accelerator to prepare vulcanized rubber with good quality. Results showed that 2G (diethyleneglycol dimethacrylate) is the best sensitizer. The optimal tensile strength of vulcanized IR was obtained by using 14 phr 2G and irradiated to 180 kGy. Compared with the sulfur vulcanizate, greater values of tensile strength, elongation at break, and 100% stress were found with the radiation-cured IR. Their Young's modulus and tan σ were similar. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 113–116, 1997  相似文献   

20.
Nylon fibers dyed with different types of acid dyes were melt reprocessed using a compression‐molding machine. The crystalline structure and mechanical properties of the melt‐reprocessed nylon were experimentally evaluated. It was found that metal complex acid dyes showed much more distinct effects on the structure and mechanical properties of melt‐reprocessed nylon than nonmetallized acid dyes. They decreased the crystallization rate of the molten nylon and reduced its crystallinity. They also reduced the imperfect form I structure in the crystalline region. Compression‐molded nylon samples showed inferior mechanical properties in the presence of metal complex acid dyes. The coordinate bonds between the Cr3+ ions and amide groups are possibly formed in melt‐reprocessed nylon, which could be the reason for the changes in the structure and properties of melt‐reprocessed nylon. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2386–2396, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号