首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chitosan, an acid soluble and renewable biopolymer, was first studied as a drug delivery agent in 1990. This review focuses on the relatively newer self‐assembling chitosan amphiphiles and their use as drug delivery agents. Chitosan amphiphiles, first introduced in the late 1990s, are prepared by conjugating hydrophobic and sometimes additional hydrophilic units to chitosan. These amphiphiles self‐assemble in aqueous media at neutral pH to form micelles, with critical micellar concentrations (CMCs) ranging from 0.09 to 700 µg mL?1. The CMCs depend on the actual molecular architecture, molecular weight and hydrophobic character, but are typically lower than the values reported for block copolymer amphiphiles. As well as linear amphiphiles in which chitosan is derivatised with hydrophobic pendant groups, new claw amphiphiles have been prepared in which chitosan amphiphiles radiate geometrically from a dendrimer core. These chitosan amphiphiles (linear and claw) have been exploited as drug delivery agents and they increase the oral bioavailability of hydrophobic drugs up to sixfold, deliver hydrophobic drugs to tumours, genes to the liver via the intravenous route, genes to the muscle via the intramuscular routes and small interfering RNAs to tumours via the intratumoural route. Chitosan amphiphile nanoparticles also deliver peptides to the brain via the intravenous and oral routes. © 2014 Society of Chemical Industry  相似文献   

2.
This work describes the preparation of thermosensitive chitosan-graft-poly(N-vinylcaprolactam) nanoparticles by ionic gelation and their potential use as a controlled drug delivery system, using doxorubicin as a model drug. A systematic study of the effect of the main processing parameters on both the size and thermoresponsive behavior of nanoparticles was investigated. The size of the particles is strongly dependent on the length of the poly(N-vinylcaprolactam) grafted chains and the concentration of the copolymer and crosslinking agent solutions. The molecular structure of the copolymer plays an essential role in the phase transition temperature of the particles, which decreases with the length of PVCL grafted chain. The system displayed proper drug-association parameters, and the drug-loaded nanoparticles exhibited dose-dependent cytotoxicity. A significant increase in the doxorubicin delivery rate was observed above the phase transition temperature (40 °C). These features indicate that these nanoparticles are suitable for the development of a new thermally controlled anti-cancer drug delivery system. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47831.  相似文献   

3.
Microgels (MGs) are synthetic colloidal hydrogel particles made of three dimensional polymer networks. Their chemical composition is crucial for their use as intelligent drug release systems operated by temperature control. Herein, several MGs using N-isopropylacrylamide (Nipam)/N-isopropylmethacrylamide (Nipmam), chitosan and acrylic/methacrylic acid have been synthesized by free radical polymerization reactions (NC MGs) and the effects of surfactants and different reaction times on size and swelling properties have been investigated. MGs have been identified and characterized by dynamic light scattering and atomic force microscopy, and finally used to optimize the encapsulation protocol of the hydrophobic drug sorafenib. The drug delivery system here described has encapsulation efficiency of 40% and releases 10% of the entrapped drug over about 16 h after the temperature is raised above the volume phase transition temperature. Data suggest that MGs with optimized composition may act as properly instructed entities able to trap and release biomolecules following external stimuli.  相似文献   

4.
The aim of this work was to prepare an erythromycin (EM) microemulsion (EM‐ microemulsion) for transdermal EM delivery using isotropic mixtures of oil and aqueous phases. The prepared EM‐microemulsion is a white dispersion, with a suitable viscosity for transdermal delivery. In stability experiments, the EM‐microemulsion showed no marked change in appearance for up to 3 weeks at 25°C. In accelerated stability experiments at 37 and 60°C, however, precipitated crystalline EM particles were observed in the EM‐microemulsion. Diffusion of EM into the skin exhibited a first order release profile. Fluorescein (FL)‐microemulsion penetrated to the dermis layer of skin. In conclusion, we confirmed that EM‐microemulsion could serve as an excellent transdermal carrier of EM. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Ocular inflammation is commonly associated with eye disease or injury. Effective and sustained ocular delivery of therapeutics remains a challenge due to the eye physiology and structural barriers. Herein, we engineered a photocrosslinkable adhesive patch (GelPatch) incorporated with micelles (MCs) loaded with loteprednol etabonate (LE) for delivery and sustained release of drug. The engineered drug loaded adhesive hydrogel, with controlled physical properties, provided a matrix with high adhesion to the ocular surfaces. The incorporation of MCs within the GelPatch enabled solubilization of LE and its sustained release within 15 days. In vitro studies showed that MC loaded GelPatch supported cell viability and growth. In addition, subcutaneous implantation of the MC loaded GelPatch in rats confirmed its in vivo biocompatibility and stability within 28 days. This non-invasive, adhesive, and biocompatible drug eluting patch can be used as a matrix for the delivery and sustained release of hydrophobic drugs.  相似文献   

6.
Bionanocomposite films based on chitosan and nanocellulose (nanocrystals or nanofibrils) have gained considerable attention for biomedical applications, especially for wound dressings. However, the development of these films as controlled drug release dressings is still under-exploited. Therefore, this work aimed to design chitosan/nanocellulose-based bionanocomposite films, loaded by betamethasone or silver sulfadiazine, as functional dressings. The films were obtained by solvent casting and characterized by physicochemical, mechanical, barrier properties, in vitro drug release, and antimicrobial activity. The nanocellulose type, physical state, and content caused influence on the film's properties providing different physical, barrier, and drug release profiles. They are semi-occlusive and mechanically resistant; the drug release is controlled, and possesses antimicrobial activity. In conclusion, the developed biodegradable bionanocomposite films are promising as active dressings for controlled drug delivery in the wound site and have specific applications according to their features to treat inflamed and purulent wounds, non-infectious dry wounds, and infectious wounds.  相似文献   

7.
New carrier platforms have been designed for an electrospun pyridinium calixarene nanofiber for controlled drug delivery. First, 5,11,17,23-tetra-tert-butyl-25,27-bis(3-aminomethyl-pyridineamido)-26,28-dihydroxycalix[4]arene (3-AMP) scaffold was produced by electrospinning. AMP scaffold was modified by human serum albumin (HSA), folic acid (FA), and glutathione (GSH). Doxorubicin (DOX) was loaded to surfaces of the AMP, AMP-HSA, AMP-HSA-FA, and AMP-HSA-GSH nanofibers by using DOX solution in different buffers with, 2.2, 4.0, 6.0, and 7.4 pH. The release studies DOX from four different nanofibers was also done in a various amount microenviroments by changing pH values. The loading and release amount of DOX was estimated from the calibration curve drawn at 480 and 560 nm of excitation and emission wavelengths by using a fluorescence spectrophotometer. The loading studies were confirmed by Fourier transforms infrared, atomic force microscopy, transmission electron microscopy, scanning electron microscope, and energy-dispersive X-ray (EDX) analysis.  相似文献   

8.
Carboxymethyl sago pulp (CMSP)/pectin hydrogel beads were synthesized by calcium crosslinking and further crosslinked by electron beam irradiation to form drug carrier for colon‐targeted drug. Sphere‐shaped CMSP/pectin 15%/5% hydrogel beads is able to stay intact for 24 h in swelling medium at pH 7.4. It shows pH‐sensitive behavior as the swelling degree increases as pH increases. Fourier transform infrared spectroscopy analysis confirmed the absence of chemical interaction between hydrogel beads and diclofenac sodium. Differential scanning calorimetric and X‐ray diffraction studies indicate the amorphous nature of entrapped diclofenac sodium. The drug encapsulation efficiency is up to about 50%. Less than 9% of drug has been released at pH 1.2 and the hydrogel beads sustain the drug release at pH 7.4 over 30 h. This shows the potential of CMSP/pectin hydrogel beads as carrier for colon‐targeted drug. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43416.  相似文献   

9.
In this study, a novel type of macromolecular prodrug, N‐galactosylated chitosan (GC)?5‐fluorouracil acetic acid (FUA) conjugate based nanoparticles, was designed and synthesized as a carrier for hepatocellular carcinoma drug delivery. The GC–FUA nanoparticles were produced by an ionic crosslinking method based on the modified ionic gelation of tripolyphosphate with GC–FUA. The structure of the as‐prepared GC–FUA was characterized by Fourier transform infrared and 1H‐NMR analyses. The average particle size of the GC–FUA nanoparticles was 160.1 nm, and their drug‐loading content was 21.22 ± 2.7% (n = 3). In comparison with that of the freshly prepared nanoparticles, this value became larger after 7 days because of the aggregation of the GC–FUA nanoparticles. An in vitro drug‐release study showed that the GC–FUA nanoparticles displayed a sustained‐release profile compared to 5‐fluorouracil‐loaded GC nanoparticles. All of the results suggest that the GC–FUA nanoparticles may have great potential for anti‐liver‐cancer applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42625.  相似文献   

10.
In this study, a novel strategy has been developed for the assembly of polyelectrolyte multilayer (PEM) on CaCO3 templates in acidic pH solutions, where consecutive polyelectrolyte layers (heparin/poly(allylamine hydrochloride) or heparin/chitosan) were deposited on PEM hollow microcapsules established previously on CaCO3 templates. The PEM build‐up, hollow capsule characterization and successful encapsulation of fluorescein 5(6)‐isothiocyanate (FITC)‐Dextran by coprecipitation with CaCO3 are demonstrated. Improvement by the removal of CaCO3 core was achieved while the depositions. In the course of the release profile, high retardation for encapsulated FITC‐Dextran was observed. The combined shell capsules system is a significant trait that has potential use in tailoring functional layer‐by‐layer capsules as intelligent drug delivery vehicles where the preliminary in vitro tests showed the responsiveness on the enzymes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44425.  相似文献   

11.
Halloysite nanotubes are cheap, abundant in their deposits, natural green clays with cylindrical structure having a chemical composition similar to that of kaolin. Because of their lumens, high aspect length–diameter ratio and low hydroxyl density on their surface they are readily suitable for a number of interesting applications. In this review we focus only on their use as ‘nano‐bazooka’ drug carriers, able to shoot their cargo against major diseases. Their structure, controlled release and loading are described. We emphasize especially their possible use as novel drug delivery systems with applications in nanomedicine. © 2017 Society of Chemical Industry  相似文献   

12.
Zein is the major storage protein from corn with strong hydrophobicity and unique solubility and has been considered as a versatile food biopolymer. Due to the special tertiary structures, zein can self‐assemble to form micro‐ and nano‐particles through liquid–liquid dispersion or solvent evaporation approaches. Zein‐based delivery systems have been particularly investigated for hydrophobic drugs and nutrients. Recently, increasing attention has been drawn to fabricate zein‐based advanced drug delivery systems for various applications. In this review, the molecular models of zein tertiary structure and possible mechanisms involved in zein self‐assembly micro‐ and nano‐particles are briefly introduced. Then, a state‐of‐the‐art introduction and discussion are given in terms of preparation, characterization, and application of zein‐based particles as delivery systems in the fields of food science, pharmaceutics, and biomedicine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40696.  相似文献   

13.
A novel type of reduction‐sensitive graft copolymers, chitosan‐S‐S‐poly(ε‐caprolactone) (CS‐S‐S‐PCL, here ‐S‐S‐ means PCL was conjugated onto chitosan backbone through disulfide linkage), was synthesized through a convenient route using dithiodipropionic anhydride (DTDPA) as a disulfide donor. Reaction of hydroxy‐terminated poly(ε‐caprolactone) (PCL) with DTDPA quantitatively yielded DTDPA functionalized PCL (PCL‐S‐S‐COOH). The disulfide‐containing polyester was regioselectively conjugated onto the hydroxy groups of chitosan under mild and homogeneous conditions, utilizing dodecyl sulfate‐chitosan complexes (SCC) as an intermediate. The self‐assembly and Doxorubicin (Dox) release behavior of the copolymers were investigated. Spherical micelles could be formed through self‐assembly of CS‐S‐S‐PCL in aqueous media. The reduction‐sensitive behavior of CS‐S‐S‐PCL micelles was investigated by using Dithiothreitol (DTT) as a reductive reagent. In the presence of 10 mM DTT, the micelles gradually lost their aggregation stability and were precipitated out after four days. In addition, the Dox release was accelerated when the micelles were treated with DTT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
This article deals with the synthesis of hybrid nanocomposite hydrogels through the combination of cellulose (C), polypropylene oxide/poly ethylene oxide (PPO/PEO), and silver nanoparticles (AgNPs) by in situ polymerization technique for the in vitro release of ornidazole drugs. The structure of the resulted materials is identified using SEM, XRD, FTIR, XPS, and TGA spectroscopic techniques. The resulting structure, morphology, thermo responsive property, water retention, and swelling behavior of hydrogels are investigated. The rheological measurement is studied to establish the enhancement of the viscoelasticity and stiffness of hydrogels. The antibacterial activity of the biodegradable silver hybrid nanocomposite hydrogel is investigated by inhibition zone method against gram positive and negative bacteria. Maximum drug release of 96.4% is recorded at 7.4 pH in 5 h. The biocompatibility and cytotoxicity of the hybrid nanocomposite hydrogel are verified using mouse fibroblast cell line L-929 (ATCC CCL-1) cells for their possible use as controlled drug delivery vehicles. The nontoxic nature makes the materials more biocompatible and suitable to apply in the biological systems. Therefore, nontoxic and biocompatible natures of present materials with improved thermal and rheological properties support for their possible uses as drug delivery vehicles.  相似文献   

15.
Crosslinked carriers based on cationic monomer [2‐(acryloyloxy)ethyl]trimethylammonium chloride or 2‐(dimethylamino)ethyl methacrylate were developed and investigated as new platform for ibuprofen transdermal delivery. Series of networks of varied composition and structure were synthesized and characterized by FTIR spectroscopy and following swelling kinetics in different solvents. Dermal safety tests to examine the skin irritation and sensitization potential of the network films were performed in vivo. Chosen network compositions were loaded with ibuprofen by swelling in its ethanol solution. The structures of the drug carriers were investigated by scanning electron microscopy. Ibuprofen release from the developed drug delivery systems was followed in phosphate buffer solution at 37 °C. The investigation proved the feasibility of the developed cationic copolymer networks as effective platforms with modified ibuprofen release for potential dermal application. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46420.  相似文献   

16.
Abstract

The immobilization and controlled release of salicylic acid (SA) in chitosan/poly(lactic acid) (Ch/LA) blends were studied in the present work. The Ch/PLA bland’s morphology was studied by SEM. FT-IR and DSC were used to investigate the interactions between the polymer matrix and the SA. The SA release kinetics was interpreted by the Weibull and Higuchi models. The SA release was the fastest in Ch/PLA systems with inhomogeneous and porous structure. It was slower in neat PLA matrix due to its dense structure and hydrophobic behavior, and in neat chitosan matrix, because of specific electrostatic chitosan/SA interactions and complex formation.  相似文献   

17.
In this study, carboxymethyl chitosan (CMC) hydrogel beads were prepared by crosslinking with Ca2+. The pH‐sensitive characteristics of the beads were investigated by simulating gastrointestinal pH conditions. As a potential protein drug delivery system, the beads were loaded with a model protein (bovine serum albumin, BSA). To improve the entrapment efficiency of BSA, the beads were further coated with a chitosan/CMC polyelectrolyte complex (PEC) membrane by extruding a CMC/BSA solution into a CaCl2/chitosan gelation medium. Finally, the release studies of BSA‐loaded beads were conducted. We found that, the maximum swelling ratios of the beads at pH 7.4 (17–21) were much higher than those at pH 1.2 (2–2.5). Higher entrapment efficiency (73.2%) was achieved in the chitosan‐coated calcium‐CMC beads, compared with that (44.4%) in the bare calcium‐CMC beads. The PEC membrane limited the BSA release, while the final disintegration of beads at pH 7.4 still leaded to a full BSA release. Therefore, the chitosan‐coated calcium‐CMC hydrogel beads with higher entrapment efficiency and proper protein release properties were a promising protein drug carrier for the site‐specific release in the intestine. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3164–3168, 2007  相似文献   

18.
In this work, we present a new type of glutathione (GSH)-responsive polyurethane-based core‑shell nanogels (RS-CS-PUNGs) with hydrophilic methoxypolyethylene glycols (mPEG) shell, which was prepared by a one-pot synthetic method. The obtained RS-CS-PUNGs not only show a good size distribution with the hydrodynamic radii around of 20 nm, but also exhibit good stability in the organic solvent. The results demonstrate that GSH (10 mM) trigger the nanogel swelling and accelerate the loaded drug release in PBS (pH = 7.4). Although the RS-CS-PUNGs loaded with DOX show a slower cellular uptake behavior than the free doxorubicin (DOX), which is likely caused by the controlled drug release property of the nanocarrier, the enhanced cellular uptake fluorescence intensity of RS-CS-PUNGs loaded with DOX is still observed compared to the control group. Both MTT and CCK-8 assay indicate that although an obvious lower initial cytotoxicity is observed compared to free DOX at 24 h postincubation, the cytotoxicity of the RS-CS-PUNGs loaded with DOX is obvious enhanced after treated 72 h, which stayed at the similar level with free DOX. Attributing to the easy preparation progress and GSH-responsive property, RS-CS-PUNGs maybe hold the potential for further application in the field of drug delivery. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48473.  相似文献   

19.
In this work, nanofiber scaffolds for surface drug delivery applications were obtained by electrospinning poly(N-vinylcaprolactam) (PNVCL) and its blends with poly(ε-caprolactone) and poly(N-vinylcaprolactam)-b-poly(ε-caprolactone). The process parameters to obtain smooth and beadless PNVCL fibers were optimized. The average fibers diameter was less than 1 μm, and it was determined by scanning electron microscopy analyses. Their affinity toward water was evaluated by measuring the contact angle with water. The ketoprofen release behavior from the fibers was analyzed using independent and model-dependent approaches. The low values of the release exponent (n < 0.5) obtained for 20 and 42 °C, indicating a Fickian diffusion mechanism for all formulations. Dissolution efficiencies (DEs) revealed the effect of polymer composition, methodology used in the electrospinning process, and temperature on the release rate of ketoprofen. PNVCL/poly(N-vinylcaprolactam)-b-poly(ε-caprolactone)-based nanofibers showed greater ability to control the in vitro release of ketoprofen, in view of reduced kinetic constant and DE, making this material promising system for controlling release of hydrophobic drugs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48472.  相似文献   

20.
Porous chitosan (CS)/graphene oxide (GO) composite xerogels were prepared through a simple and “green” freeze‐drying method. Scanning electron microscopy, Fourier transform infrared spectrometry, powder X‐ray diffraction, and compressive strength measurements were performed to characterize the microstructures and mechanical properties of as‐prepared composite xerogels. The results show that the incorporation of GO resulted in an observable change in the porous structure and an obvious increase in the compressive strength. The abilities of the composite xerogels to absorb and slowly release an anticancer drug, doxorubicin hydrochloride (DOX), in particular, the influence of different GO contents, were investigated systematically. The porous CS/GO composite xerogels exhibited efficient DOX‐delivery ability, and both the adsorption and slow‐release abilities increased obviously with increasing GO content. Additionally, the best adsorption concentration of DOX was 0.2 mg/mL, and the cumulative release percentage of DOX from the xerogels at pH4 much higher than that at pH 7.4. Therefore, such porous CS/GO composite xerogels could be promising materials as postoperation implanting stents for the design of new anticancer drug‐release carriers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号