首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) have seen increased interest from manufacturers as a nanofiber filler for the enhancement of various physical and mechanical properties. A major drawback for widespread commercial use has been the cost associated with growing, functionalizing, and incorporating CNTs into commercially available polymeric matrices. Accordingly, the main objective of this study was to investigate the effects of adding commercially viable functionalized multiwalled carbon nanotubes (MWCNT) to a commercially available epoxy matrix. The mechanical behavior of the nanocomposites was investigated by mechanical testing in tensile mode and fractures were examined by scanning electron microscopy. The thermal behavior was investigated by differential scanning calorimetry and thermogravimetric analysis. Molecular composition was analyzed by attenuated total reflectance Fourier transform infrared spectroscopy. Mechanical testing of the epoxy/functionalized‐MWCNT indicated that the 0.15 wt % functionalized MWCNT composite possessed the highest engineering stress and toughness out of the systems evaluated without affecting the Young's modulus of the material. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The focus of this study is to investigate the state of dispersion of different treated multiwalled carbon nanotubes (MWNTs) in polyamide 6 (PA6). The MWNTs used in composites were grafted by 1,6‐hexamethylenediamine (HMD) via acid‐thionyl chloride to improve their compatibility with PA6 matrix. A microstructure transformation of MWNTs is found during the treatment process. Acidification makes the MWNTs compact and grafting HMD promotes the compact structure loose again. The MWNTs after different treatment were used to fabricate MWNTs/PA6 composites through melt blending. The dispersion of different MWNTs in PA6 was observed by a combination of scanning electron microscopy, optical microscopy, and transmission electron microscopy. The results show that the amino‐functionalized MWNTs are dispersed more homogeneously in PA6 than the purified MWNTs, and the poorest dispersion is achieved for acid treated MWNTs. It is indicated that the loose structure and functionalized surface of MWNTs benefit the dispersion of MWNTs in PA6. In addition, the amino‐functionalization of MWNTs improves the compatibility between the MWNTs and PA6, resulting in stronger interfacial adhesion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
2‐Hydroxyethyl methacrylate copolymers with styrene and series of the cross‐linkers (divinylbenzene and mono‐, di‐ and triethylene glycol dimethacrylates) with low cross‐linking degree (2–5 mol %) were obtained by suspension polymerization. Loading capacity of the resins, their glass transition temperature, and swelling characteristics in 20 solvents were analyzed depending on monomers composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1487–1493, 2006  相似文献   

4.
Composites with nickel particles coated multiwalled carbon nanotubes (Ni‐MWNTs) embedded into polyvinylidene fluoride (PVDF) were prepared by solution blending and hot‐press processing. The morphology, structure, crystallization behavior, and dielectric properties of composites were studied. The results showed that the crystallization of PVDF was affected by Ni‐MWNTs. With the increment of Ni‐MWNTs, the content of β‐phase in PVDF increased. The dielectric permittivity was as high as 290 at 103 Hz when the weight fraction of Ni‐MWNTs was 10%. The results can be explained by the space charge polarization at the interfaces between the insulator and the conductor, and the formation of microcapacitance structure. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3746–3752, 2013  相似文献   

5.
Biocompatible polymers with specific shape and tailored hydrogel properties were obtained by polymerization of mixtures of 2‐hydroxyethyl methacrylate (HEMA) with 1–8 wt % ethylene glycol dimethacrylate (EGDMA) or tetra(ethylene glycol) diacrylate (TEGDA) as crosslinking agents, by using a redox initiator. Introduction of charged positive and negative groups was easily achieved by direct polymerization of appropriate monomer mixtures and by chemical transformation of preformed hydrogels. Investigation of the swelling behavior of the prepared hydrogels evidenced an appreciable dependence on both solvent type and polymer chemical structure. Additionally, the solvation process resulted in being controlled by solvent diffusion, according to a Fickian II mechanism. The presence of several types of water with different melting behavior was observed in fully swollen hydrogels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2729–2741, 2002  相似文献   

6.
The copolymerisation of styrene and 2‐hydroxyethyl methacrylate (2‐HEMA) in a three‐component oil‐in‐water microemulsion containing sodium dodecylsulfate as emulsifier was investigated as a function of temperature and concentration of potassium persulfate or hydrogen peroxide/ascorbic acid as initiator. Stable and transparent poly(styrene–2‐HEMA) latexes were produced. The latexes were characterised for particle size and number of particles by dynamic light scattering and transmission electron microscopy. The isolated products were characterised by 1H NMR as well as by thermal analysis. The overall size of particles was observed to be in the range 22–38 nm. Attempts are made to examine the suitability of the existing mathematical models for homopolymerisation to account for the copolymerisation of styrene and 2‐HEMA. © 2002 Society of Chemical Industry  相似文献   

7.
The hardness of irradiated hydroxyethyl methacrylate (HEMA) copolymer at elevated temperatures was measured using a microhardness tester. The hardness increases with annealing time, and is attributed to the defects present in the molecular chains. The defects that control the hardness are related to the entanglement of polymer chain and follow a first order kinetics process. The relaxation time satisfies the Arrhenius equation, with constant activation energy of 25 kJ/mol independent of the irradiation dose. The results were compared with those of PMMA and LiF single crystals reported in the literature. The present findings are useful in the study of soft contact lens, kidney dialysis system, drug delivery system, and artificial liver support system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Pristine and functionalized multiwalled carbon nanotubes (MWNTs) were used to fabricate polyamide 6 (PA6) composites through melt blending. The functionalized MWNTs were obtained by grafting 1,6‐hexamethylenediamine (HMD) onto the pristine MWNTs to improve their compatibility with PA6 matrix. The effect of MWNTs on the isothermal crystallization and melting behavior of PA6 was investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). The Avrami and Lauritzen–Hoffmann equations are used to describe the isothermal crystallization kinetics. The values of the Avrami exponent found for neat PA6, the pristine MWNTs/PA6 and functionalized MWNTs/PA6 composite samples are about 4.0, 1.7, and 2.3, respectively. The activation energies are determined by the Arrhenius method, which is lower for the composites, ?320.52 KJ/mol for pristine MWNTs/PA6 and ?293.83 KJ/mol for functionalized MWNTs/PA6, than that for the neat PA6 (?284.71 KJ/mol). The following melting behavior reveals that all the isothermally crystallized samples exhibit triple melting endotherms at lower crystallization temperature and double melting endotherms at higher crystallization temperature. The multiple melting endotherms are mainly caused by the recrystallization of PA6 during heating. The resulting equilibrium melting temperature is lower for the composites than for neat PA6. In addition, polarizing microscopy (PLM) and small angle light scanning (SALS) were used to study the spherulite morphology. The results show that the MWNTs reduce the spherulite radius of PA6. This reduction is more significant for pristine MWNTs. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Hyperbranched polymers have been found effective in controlling the dispersibility of carbon nanotubes in aqueous solutions. In this study, hyperbranched polylysine (HBPL) was synthesized using lysine and N,N′‐methylenebisacrylamide as precursors via Michael addition. The HBPL then was used to noncovalently modify multiwalled carbon nanotubes (MWCNTs) to prepare MWCNTs‐HBPL. The obtained MWCNTs‐HBPL composites were characterized using FTIR spectroscopy, Raman spectroscopy, thermogravimetric analysis, and scanning electron microscopy. The results showed that the HBPL was successfully attached to the surface of MWCNTs via noncovalent interactions. The dispersibility of the MWCNTs‐HBPL composites in aqueous solutions was investigated using digital photographs, ultraviolet–visible absorption spectroscopy, and zeta potential measurements. The results demonstrated that both the mass ratio of MWCNT to HBPL and the pH of the solution had a significant impact on the dispersibility of the MWCNTs/HBPL solution, suggesting that HBPL treatment is an effective method of controlling the dispersibility of MWCNTs in aqueous solutions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46249.  相似文献   

10.
Multiwalled carbon nanotubes (MWNTs) purified by sulfuric acid and nitric acid were functionalized with polyimide (PI) via an in situ polymerization in N,N‐diemethyformamide. The transmission electron microscopic and scan electron microscopic images showed that the functionalized MWNTs were wrapped by PI. The results of infrared, Raman, and UV–vis display that there was π‐π‐stacking interaction between imide and benzene ring in PI and the graphitic sidewalls of the MWNTs. The thermogravimetric analysis and differential scanning calorimetry results indicate that the thermal stability of the functionalized MWNTs with PI was improved. POLYM. COMPOS., 28:36–41, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
2‐Hydroxyethyl methacrylate was copolymerized with acrylamide, N‐vinyl‐2‐pyrrolidone, and n‐butyl methacrylate by free‐radical solution polymerization with α,α′‐azobisisobutyronitrile as an initiator at 70 ± 1°C. The average molecular weights and molar compositions of the resultant copolymers were determined with gel permeation chromatography and 1H‐NMR spectroscopy data, respectively. Diclofenac or 2‐[(2,6‐dichlorophenyl)amino]benzene acetic acid, a nonsteroidal anti‐inflammatory drug, was chemically attached to the copolymers by transesterification reaction in the presence of N,N′‐dicyclohexylcarbodiimide to give macromolecular prodrugs. All the synthesized polymers were characterized with Fourier transform infrared, 1H‐, and 13C‐NMR spectroscopy techniques. The polymer–drug conjugates were hydrolyzed in cellophane member dialysis bags containing aqueous buffered solutions (pH 8) at 37°C, and the hydrolysis solutions were detected by UV spectrophotometer at selected intervals. The results showed that the drug could be released by selective hydrolysis of the ester bond from the side chain of the drug moiety. The release profiles of the drug indicated that the hydrolytic behavior of polymeric prodrugs strongly depends on the hydrophilicity of the polymer. The results suggest that the synthesized copolymers could be useful carriers for the release of diclofenac in controlled‐release systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2403–2409, 2007  相似文献   

12.
The swelling and rheological behaviour of hydrogels of morphology varying from non‐porous to highly porous was investigated. The hydrogels were prepared by redox free radical copolymerization of 2‐hydroxyethyl methacrylate with 0.1 to 5 mol% of di(ethylene glycol) dimethacrylate in the presence of water varying from 40 to 80 wt%. Various compositions led to clear, turbid or macroporous gels. The morphology of the gels was characterized using optical microscopy and cryoscan electron microscopy. The oscillatory shear and creep of swollen gels revealed that there was a pronounced difference between homogeneous or microheterogeneous and macroporous gels with communicating pores. The achievement of optimum conditions for the correct determination of shear modulus was also analysed. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
UV radiation induced graft copolymerization of 2‐hydroxyethyl methacrylate onto natural lignocellulose (jute) fiber was carried out by two methods: simultaneous irradiation and grafting and preirradiation grafting. 1‐Hydroxycyclohexyl‐phenylketone was used as the photoinitiator in both methods. In the former method, the variation of the graft weight was measured for different values of radiation exposure time and the concentrations of both the monomer and photoinitiator. The latter method produced up to 76% graft weight compared to 45% obtained with the former method. The preirradiation method offers better control of the homopolymerization reaction compared to that afforded by the other method. The optimum value of the reaction parameters on the graft weight was evaluated. The mechanical properties of grafted samples were found to be drastically different from those of the as‐received ones and the effect was proportional to the percentage of graft weight. Differential scanning calorimetry studies showed that the percentage of graft add‐on of hydroxyethyl methacrylate with jute had a significant effect on the thermal properties. IR studies indicated the degree of grafting could be estimated by correlating the band intensities with the graft weight. The jute samples grafted with poly(hydroxyethyl methacrylate) at a level of 12% graft weight exhibited a maximum 20% increase in hydrophilicity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2898–2910, 2006  相似文献   

14.
Hydroxyethyl methacrylate was grafted onto woolen fabrics by microwave irradiation in the presence of catalyst (NH4)2S2O8. Various parameters of the graft copolymerization reaction, namely, time, microwave intensity, catalyst, and monomer concentration, were optimized. The graft copolymerization was also compared with conventional heating graft copolymerization at the same condition. Microwave irradiation was shown to improve the reactivity of the monomer. The moisture regain decreased as graft add-on increased. The Max load and the strain at Max load increased as graft add-on increased. The infrared spectra showed an additional peak at 1700 cm−1, confirming ester carbonyl groups of the monomer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2343–2347, 1998  相似文献   

15.
Hybrid nanocomposites of poly(2‐hydroxyethyl methacrylate) (PHEMA) and TiO2 nanoparticles were synthesized via surface thiol‐lactam initiated radical polymerization by following the grafting from strategy. Initially, TiO2 nanoparticles were modified by 3‐mercaptopropyl trimethoxysilane to prepare thiol functionalized TiO2 nanoparticles (TiO2? SH). Subsequently, surface initiated polymerization of 2‐hydroxyethyl methacrylate was conducted by using TiO2? SH and butyrolactam as an initiating system. The anchoring of PHEMA onto the surface of TiO2 nanoparticles was investigated by FTIR, 1H‐NMR, XPS, TGA, and XRD analyses. The experimental results indicated a strong interaction between PHEMA and TiO2 nanoparticles owing to covalent bonding. The TEM and SEM images of PHEMA‐g‐TiO2 showed that the agglomeration propensity of TiO2 nanoparticles was significantly reduced upon the PHEMA functionalization. The molecular weight and polydispersity index of the cleaved PHEMA from the surface of TiO2 nanocomposites were estimated by GPC analysis. An improved thermal property of the nanocomposites was observed from TGA analysis. PHEMA‐g‐TiO2 nanocomposites were found to be highly dispersible in organic solvents. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
Poly(methyl methacrylate)/multiwalled carbon nanotubes (PMMA/MWCNT) composites were prepared by two different methods: melt mixing and solution casting. For solution casting, two different solvents, toluene and chloroform, were used to prepare PMMA solutions with different concentrations of MWCNT. The dispersion of the CNT in the composite samples was verified by scanning electron microscopy. For the nanocomposites prepared by both methods, the electrical conductivity increased with increasing filler content, showing typical percolation behavior. In addition, an increase of 11 orders of magnitude in the electrical conductivity relative to the matrix conductivity was determined by broadband dielectric spectroscopy and four probe conductivity measurements. A maximum value of σDC ~ 1.6 S/cm was found for the highest filler loaded sample (3.67 vol %), which was prepared by solution casting from toluene. Nanoindentation analysis was used to characterize the surface mechanical properties of the composite samples prepared by the different methods. Indentation tests were performed at various penetration depths, and it was revealed that the melt mixing process resulted in stiffer neat PMMA samples compared to the solution casted PMMA samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41721.  相似文献   

17.
Poly(2‐hydroxyethyl methacrylate)‐co‐polylactide (PHEMA‐co‐PLA) and its corresponding cyhalothrin‐loaded ultrafine particles were successfully synthesized and prepared, respectively. The chemical structures of the copolymers have been confirmed by Fourier transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H‐NMR), 13C‐nuclear magnetic resonance (13C‐NMR), and thermogravimetric analysis (TGA). Furthermore, the particle size, the cyhalothrin loading content (LC), and the cyhalothrin release behavior were investigated. PHEMA‐co‐PLA proved to be a good material for the preparation of ultrafine particles for lipophilic pesticide delivery. The developed cyhalothrin‐loaded PHEMA‐co‐PLA ultrafine particles showed good dispersity in water and sustained release behavior. In addition, it is easy to be prepared by both nanoprecipitation method and emulsion/solvent evaporation method. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The corona discharge technique was explored as a means of forming chemically active sites on a low‐density polyethylene (LDPE) film surface. The active species thus prepared at atmospheric pressure in air was exploited to subsequently induce copolymerization of 2‐hydroxyethyl methacrylate (HEMA) onto LDPE film in aqueous solution. The results showed that with the corona discharge voltage, reaction temperature, and inhibitor concentration in the reaction solution the grafting degree increased to a maximum and then decreased. As the corona discharge time, reaction time, and HEMA concentration in the reaction solution increased, the grafting degree increased. With reaction conditions of a 5 vol % HEMA concentration, 50°C copolymerization temperature, and a 2.0‐h reaction time, the degree of grafting of the LDPE film reached a high value of 158.0 μg/cm2 after treatment for 72 s with a 15‐kV voltage at 50 Hz. Some characteristic peaks of the grafted LDPE came into view at 1719 cm?1 on attenuated total reflectance IR spectra (C?O in ester groups) and at 531 eV on electron spectroscopy for chemical analysis (ESCA) spectra (O1s). The C1s core level ESCA spectrum of HEMA‐grafted LDPE showed two strong peaks at ~286.6 eV (? C ? O? from hydroxyl groups and ester groups) and ~289.1 eV (O?C ? O? from ester groups), and the C atom ratio in the ? C? O? groups and O?C? O groups was 2:1. The hydrophilicity of the grafted LDPE film was remarkably improved compared to that of the ungrafted LDPE film. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2881–2887, 2001  相似文献   

19.
Dispersion of primary nanotube agglomerates in polymer melts is one of the difficult tasks when applying melt mixing for nanocomposite preparation. Hence, there is a need for a better understanding of the ongoing processes. Filler agglomerates generally undergo dispersion by rupture and erosion mechanisms, which usually occur simultaneously. To analyse these mechanisms and their corresponding dispersion kinetics 1 wt% multiwalled carbon nanotubes (MWNT) were incorporated into polycarbonate using a microcompounder. Different mixing speeds at constant melt temperature were applied thereby changing the applied stress. The states of MWNT agglomerate dispersion at different mixing times were assessed by quantifying the agglomerate area ratio and particle size distribution using image analysis of optical transmission micrographs. A model is proposed to estimate the fractions of rupture and erosion mechanisms during agglomerate dispersion. At low mixing speeds, the dispersion was found to be governed by both mechanisms, whereas rupture dominance increases with increasing mixing speed. Further, the relationship between electrical resistivity and dispersion was studied indicating a critical behaviour. A dependency on the amount of dispersed nanotubes was found only in a certain range of state of dispersion.  相似文献   

20.
The DNA adsorption properties of poly‐L ‐lysine‐immobilized poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane were investigated. The pHEMA membrane was prepared by UV‐initiated photopolymerization and activated with epichlorohydrin. Poly‐L ‐lysine was then immobilized on the activated pHEMA membrane by covalent bonding, via a direct chemical reaction between the amino group of poly‐L ‐lysine and the epoxy group of pHEMA. The poly‐L ‐lysine content of the membrane was determined as 1537 mg m?2. The poly‐L ‐lysine‐immobilized membrane was utilized as an adsorbent in DNA adsorption experiments. The maximum adsorption of DNA on the poly‐L ‐lysine‐immobilized pHEMA membrane was observed at 4 °C from phosphate‐buffered salt solution (pH 7.4, 0.1 M; NaCl 0.5 M) containing different amounts of DNA. The non‐specific adsorption of DNA on the plain pHEMA membrane was low (about 263 mg m?2). Higher DNA adsorption values (up to 5849 mg m?2) were obtained in which the poly‐L ‐lysine‐immobilized pHEMA membrane was used. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号