首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is performed to investigate the effects of variable viscosity and thermal conductivity on the two-dimensional steady flow of an electrically conducting, incompressible, upper-convected Maxwell fluid in the presence of a transverse magnetic field and heat generation or absorption. The governing system of partial differential equations is transformed into a system of coupled nonlinear ordinary differential equations, and is solved numerically. Velocity and temperature fields have been computed and shown graphically for various values of the physical parameters. The local skin-friction coefficient and the local Nusselt number have been tabulated. It is found that fluid velocity decreases with an increase in the viscosity parameter and the Deborah number. It is also observed that increasing the magnetic parameter leads to a fall in the velocity and a rise in the temperature. Furthermore, it is shown that the temperature increases due to increasing the values of the thermal conductivity parameter and the heat generation parameter, while it decreases with an increase of both the absolute value of the heat absorption parameter and the Prandtl number.  相似文献   

2.
In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.  相似文献   

3.
This paper considers the effect of buoyancy force and internal heat generation on laminar thermal boundary layer over a vertical plate with a convective surface boundary condition. We assumed that left surface of the plate is in contact with a hot fluid while a stream of cold fluid flows steadily over the right surface with a heat source that decays exponentially. Using a similarity variable, the steady state governing non‐linear partial differential equations have been transformed into a set of coupled non‐linear ordinary differential equations, which are solved numerically by applying shooting iteration technique together with fourth order Runge–Kutta integration scheme. The effects of Prandtl number, local Biot number, the internal heat generation parameter and the local Grashof number on the velocity and temperature profiles are illustrated and interpreted in physical terms. A comparison with previously published results on special case of the problem shows excellent agreement. From our results, an overshoot of fluid velocity within the boundary layer is observed due to combined effect of buoyancy force and internal heat generation, in addition, internal heat generation causes thickening of thermal boundary layer. © 2011 Canadian Society for Chemical Engineering  相似文献   

4.
In this study, unsteady MHD boundary layer flow with diffusion of chemically reactive species undergoing first-order chemical reaction over a permeable stretching sheet with suction or blowing and also with power-law variation in wall concentration is investigated. Using similarity transformation, the governing partial differential equations are converted into nonlinear self-similar ordinary differential equations. The transformed equations are then solved by the finite difference method using the quasi-linearization technique. Due to the increase in the unsteadiness parameter, the velocity initially decreases, but after a certain point it increases. A similar effect is also observed in case of concentration distribution. The increase in magnetic parameter causes a decrease in velocity and an increase in concentration. For increasing strength of applied suction both momentum and concentration boundary layer thicknesses decrease. On the other hand, applied blowing has reverse effects. Moreover, the mass transfer from the sheet is enhanced with increasing values of Schmidt number, reaction rate parameter, and also power-law exponent (related to wall concentration distribution). For high negative values of the power-law exponent, mass absorption at the sheet occurs. Moreover, due to increase of unsteadiness, this mass absorption is prevented.  相似文献   

5.
The influence of heat generation or absorption on the steady, two-dimensional flow of an electrically conducting fluid near a stagnation point on a stretching permeable surface with variable surface heat flux in the presence of a magnetic field is investigated. The governing system of partial differential equations describing the problem are converted into highly non-linear ordinary differential equations using similarity transformation. Numerical solutions of these equations are obtained using the fourth-order Runge-Kutta integration scheme with the shooting method. The effects of the heat generation or absorption parameter and the velocity ratio parameter on the velocity and the temperature are displayed graphically and discussed. The numerical values of the local skin-friction coefficient and the local Nusselt number for various values of physical parameters are presented through tables and discussed.  相似文献   

6.
The problem of a steady mixed convection stagnation point flow towards a permeable vertical plate with prescribed surface heat flux immersed in an incompressible micropolar fluid is studied numerically. The governing partial differential equations are first transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by a finite-difference scheme known as the Keller-box method and the Runge–Kutta–Fehlberg method with shooting technique. The effects of the material parameter, buoyancy parameter, suction/injection parameter and the Prandtl number on the fluid flow and heat transfer characteristics are discussed. It is found that dual solutions exist for both assisting and opposing flows. The skin friction coefficient and the local Nusselt number increase in the presence of suction and magnetic field. Moreover, suction as well as fluids with larger Prandtl number widens the range of the buoyancy parameter for which the solution exists.  相似文献   

7.
In this paper, we study the combined effects of internal heat generation and higher order chemical reaction on a steady two‐dimensional non‐Darcian forced convective flow of a viscous incompressible fluid with variable dynamic viscosity and thermal conductivity in a fluid saturated porous medium passing over a linear stretching sheet. Using similarity transformations, the governing nonlinear‐coupled partial differential equations are made dimensionless and solved numerically for similarity solutions using very robust computer algebra software Maple 8. The non‐dimensional velocity, temperature and concentration distributions are presented graphically for various pertinent parameters such as relative temperature difference parameter, Darcy number, porosity parameter, reaction rate parameter and the order of the chemical reaction. The variations of Prandtl number and Schmidt number within the boundary layer are also displayed graphically when the fluid dynamic viscosity and thermal conductivity are temperature dependent. From the present numerical computations it is found that Prandtl number as well as Schmidt number must be taken as variables within the flow domain when the fluid's dynamic viscosity and thermal conductivity are variable. In the presence of internal heat generation, dynamic viscosity and thermal conductivity of the fluid are found to be higher than when it is absent. Increasing Darcy number reduces dynamic viscosity as well as thermal conductivity whereas increasing pore size reduces the Schmidt number and increases the Prandtl number within the boundary layer. For higher order reaction the rate of increase in mass transfer function is less compared to the rate of increase for the lower order reaction. © 2011 Canadian Society for Chemical Engineering  相似文献   

8.
This paper describes the two‐dimensional flow of an incompressible viscous fluid through a non‐porous channel with heat generation and a chemical reaction. Employing similarity transformations the governing non‐linear partial differential equations are solved both analytically and numerically. Analytically, we used the homotopy analysis method and numerically, we used the Matlab in‐built boundary value solver bvp4c. The effects of the Reynolds number Re, the Eckert number Ec, heat generation parameter δ, chemical reaction parameter γ, and the local Grashof number Gc on the velocity, temperature, and concentration fields are shown through tables and graphs and discussed.  相似文献   

9.
The problem of unsteady flow and heat transfer in the laminar boundary layer on a linearly accelerating surface with suction or blowing in the absence and presence of a heat source or sink is considered. The governing partial differential equations for this investigation are transformed into the non-dimensional equations by using pseudo-similarity time and pseudo-similarity coordinate. The resulting two points boundary-value problem is solved numerically by the central finite difference method associated with Newton's iteration from the initial stage (ξ=0) to a steady state (ξ=1) completely. A parametric study is performed to illustrate the effects of Prandtl number, power-law surface temperature (PLST) or power-law heat flux (PLHF), heat sink or heat source, and suction or blowing parameter on the dynamic velocity and temperature fields as well as the transient development of the skin-friction coefficients and the Nusselt number. These results are depicted graphically to display special aspects of unsteady flow and heat transfer characteristics in all time.  相似文献   

10.
The problem of a steady laminar two‐dimensional stagnation point flow towards a stretching/shrinking sheet in a micropolar fluid with a convective surface boundary condition is studied. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically using the Runge–Kutta–Fehlberg method with shooting technique. The effects of the material parameter and the convective parameter on the fluid flow and heat transfer characteristics are disscussed. It is found that the skin friction coefficient and the heat transfer rate at the surface decrease with increasing values of the material parameter. Moreover, dual solutions are found to exist for the shrinking case, while for the stretching case, the solution is unique. © 2011 Canadian Society for Chemical Engineering  相似文献   

11.
The problem of thermal diffusion and magnetic field effects on combined free‐forced convection and mass transfer flow past a vertical porous flat plate, in the presence of heat generation is studied numerically. The governing momentum, energy and concentration equations are converted into a system of nonlinear ordinary differential equations by means of similarity transformations. The resulting system of coupled nonlinear ordinary differential equations is solved numerically by using the Shooting method. Numerical results are presented for velocity, temperature and concentration profiles within the boundary layer for different parameters of the problem including suction parameter, heat generation parameter, Soret number, Dufour number, magnetic parameter, etc. In addition, the effects of the pertinent parameters on the skin friction and the rates of heat and mass transfer are discussed numerically and illustrated graphically.  相似文献   

12.
连续螺旋折流板换热器流动与传热性能及熵产分析   总被引:1,自引:1,他引:0  
曹兴  杜文静  程林 《化工学报》2012,63(8):2375-2382
采用数值模拟的方法,研究了螺旋角对连续螺旋折流板换热器流动与传热性能的影响,并以熵产数为指标对换热器性能进行了基于热力学第二定律的分析评价。结果表明,相同质量流量时壳程传热系数和压降均随螺旋角的增大而降低,且后者降低的幅度大于前者。连续螺旋折流板换热器壳程横截面上切向速度分布较弓形折流板换热器更加均匀。在靠近中心假管的内层区域,同一径向位置的轴向速度随螺旋角的增大而降低,而在靠近壳体壁面的外层区域则相反。螺旋角越大,不同径向位置的换热管间的换热量分布均匀性越好。壳程质量流量相等时,换热器中传热引起的熵产占总熵产的比重随着螺旋角的增大而增加,熵产数随着螺旋角的增大而降低。  相似文献   

13.
The investigation of radiation-absorption,chemical reaction,Hall and ion-slip impacts on unsteady MHD free convective laminar flow of an incompressible viscous,electrically conducting and heat generation/absorbing fluid enclosed with a semi-infinite porous plate within a rotating frame has been premeditated.The plate is assumed to be moving with a constant velocity in the direction of fluid movement.A uniform transverse magnetic field is applied at right angles to the porous surface,which is absorbing the fluid with a suction velocity changing with time.The non-dimensional governing equations for present inves-tigation are solved analytically making use of two term harmonic and non-harmonic functions.The graphical results of velocity,temperature and concentration distributions on the analytical solutions are displayed and discussed with reference to pertinent parameters.It is found that the velocity profiles decreased with an increasing in Hartmann number,rotation parameter,the Schmidt number,heat source parameter,while it increased due to an increase in permeability parameter,radiation-absorption param-eter,Hall and ion slip parameters.However,the temperature profile is an increasing function of radiation-absorption parameter,whereas an increase in chemical reaction parameter,the Schmidt num-ber Sc or frequency of oscillations decrease the temperature profile on cooling.Also,it is found that the concentration profile is decreased with an escalating in the Schmidt number or the chemical reaction parameter.  相似文献   

14.
The effect of thermal radiation absorption on an unsteady free convective flow past a vertical plate is studied in the presence of a magnetic field and constant wall heat flux. Boundary layer equations are derived, and the resulting approximate nonlinear ordinary differential equations are solved analytically using asymptotic technique. A parametric study of all parameters involved is conducted, and a representative set of numerical results for the velocity and temperature profiles as well as the skin-friction parameter are illustrated graphically to show typical trends of the solutions.  相似文献   

15.
In this article, the authors analyzed the effect of thermal conductivity on unsteady magnetohydrodynamic (MHD) free convection in a micro-polar fluid past a semi-infinite vertical porous plate. The fluid thermal conductivity is assumed to vary as a linear function of temperature. By using the Chebyshev collocation method in the spatial direction and the Crank-Nicolson method in the time direction, the boundary layer equations are transformed into a linear algebraic system. There are several material parameters whose affect on the flow have been studied, for instance, thermal conductivity, radiation, magnetic, micro-polar, suction (or injection) parameters, and Prandtl number. Boundary layer and Boussineq approximations have been introduced together to describe the flow field. The domain of the problem is discretized according to the Chebyshev collocation scheme. The numerical results show that, the values of velocity, angular velocity and temperature profiles approach to the steady state when the time reach to infinity. However, the friction factor has been found to increase as micro-polar and thermal conductivity parameters increase. But it decreases as magnetic parameter increases. Meanwhile, Nusselt number increases as thermal conductivity parameter increases, and vice versa with the micro-polar parameter. Moreover, the local couple stress has been found to decrease as micro-polar and thermal conductivity parameters increase. On the other hand, it increases as magnetic parameter increases.  相似文献   

16.
In the present paper, the combined convection flow of an Ostwald–de Waele type power‐law non‐Newtonian fluid past a vertical slotted surface has been investigated numerically. The boundary condition of uniform surface heat flux is considered. The equations governing the flow and the heat transfer are reduced to local non‐similarity form. The transformed boundary layer equations are solved numerically using implicit finite difference method. Solutions for the heat transfer rate obtained for the rigid surface compare well with those documented in the published literature. From the present analysis, it is observed that, an increase in χ leads to increase in skin friction as well as reduction in heat transfer at the surface. As the power‐law index n increases, the friction factor as well as heat transfer increase.  相似文献   

17.
The effect of a magnetic field on a micropolar fluid flow in the vicinity of an axisymmetric stagnation point on a circular cylinder is studied numerically. The governing conservation equations of continuity, momentum and angular momentum are partial differential equations which are transformed into a system of ordinary differential equations by using the usual similarity transformations. The resulting system of coupled non‐linear ordinary differential equations is solved numerically by using the shooting method. The numerical results indicate the velocity, angular velocity and pressure distributions for different parameters of the problem including Reynolds number, magnetic parameter and dimensionless material properties, etc. In addition, the effect of the pertinent parameters on the local skin friction coefficient and the couple stress are discussed numerically and illustrated graphically.  相似文献   

18.
The effects of oscillating plate temperature on transient mixed convection heat transfer from a porous vertical surface embedded in a saturated porous medium with internal heat generation or absorption are studied. The governing equations are transformed into dimenionless form by a set of variables and solved using the Galerkine finite element method. As the energy generation increases, the temperature near the wall will be higher than the wall temperature, thus increasing buoyancy forces inside the boundary layer and consequently increasing the velocity. The increase of energy absorption term for either space or temperature dependence will decrease the velocity inside the boundary layer and increase heat transfer rates. Different temperature and velocity profiles are drawn for different dimensionless groups. Numerical values for Nusselt numbers as well as local skin friction coefficient are also tabulated.  相似文献   

19.
The effects of oscillating plate temperature on transient mixed convection heat transfer from a porous vertical surface embedded in a saturated porous medium with internal heat generation or absorption are studied. The governing equations are transformed into dimenionless form by a set of variables and solved using the Galerkine finite element method. As the energy generation increases, the temperature near the wall will be higher than the wall temperature, thus increasing buoyancy forces inside the boundary layer and consequently increasing the velocity. The increase of energy absorption term for either space or temperature dependence will decrease the velocity inside the boundary layer and increase heat transfer rates. Different temperature and velocity profiles are drawn for different dimensionless groups. Numerical values for Nusselt numbers as well as local skin friction coefficient are also tabulated.  相似文献   

20.
The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号